已知A(1,4),B(2,5),C(-2,1),求證:A,B,C三點共線.
考點:三點共線
專題:直線與圓
分析:利用斜率計算公式,只要證明kAB=kAC即可.
解答: 證明:∵kAB=
4-5
1-2
=1,kAC=
1-4
-2-1
=1,
∴kAB=kAC,且AB與AC有相同的點A,
∴A,B,C三點共線.
點評:本題考查了斜率計算公式證明三點共線,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給出下列五個命題:
①不等式x2-4ax+3a2<0的解集為{x|a<x<3a};
②若函數(shù)y=f(x+1)為偶函數(shù),則y=f(x)的圖象關于x=1對稱;
③若不等式|x-4|+|x-3|<a的解集為空集,必有a≥1;
④函數(shù)y=f(x)的圖象與直線x=a至多有一個交點.
其中所有正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題P:?a,b(0,+∞),當a+b=1時,
1
a
+
1
b
=3; 命題Q:?x∈R,x2-x+1≥0恒成立,則下列命題是假命題的是( 。
A、¬P∨¬QB、¬P∧¬Q
C、¬P∨QD、¬P∧Q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求和:
1
4×12-1
+
1
4×22-1
+
1
4×32-1
+…+
1
4n2-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知12sinα-5cosα=13,則tanα=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a:b:c=1:3:3,求
2sinA-sinB
sinC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:
sin(π-α)
cos(α-π)
cos(
π
2
-α)sin(
π
2
+α).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是奇函數(shù)且f(log
1
2
4)=-3,當x>0時,f(x)=ax(a>0,a≠1),則實數(shù)a的值為( 。
A、9
B、3
C、
3
2
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,∠A=60°,∠B=45°,c=1,求此三角形的最小邊長.

查看答案和解析>>

同步練習冊答案