已知數(shù)列an的前n項(xiàng)和為Sn=2n2-3n+1,則它的通項(xiàng)公式an=
 
分析:首先根據(jù)Sn=2n2-3n+1求出a1的值,然后利用an=Sn-Sn-1求出當(dāng)n≥2時(shí),an的表達(dá)式,然后驗(yàn)證a1的值,最后寫出an的通項(xiàng)公式.
解答:解:∵Sn=2n2-3n+1,a1=0,
∴an=Sn-Sn-1=2n2-3n+1-2(n-1)2+3(n-1)-1=4n-5(n≥2),
當(dāng)n=1時(shí),a1=-1,
∴an=
0  n=1
4n-5  n≥2

故答案為
0  n=1
4n-5  n≥2
點(diǎn)評:本題主要考查數(shù)列遞推式的知識點(diǎn),解答本題的關(guān)鍵是利用an=Sn-Sn-1(n≥2)進(jìn)行解答,此題難度不大,很容易進(jìn)行解答,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列an的前n項(xiàng)和為Sn,且a1=1,Sn=n2an(n∈N),
(1)試計(jì)算S1,S2,S3,S4,并猜想Sn的表達(dá)式;
(2)證明你的猜想,并求出an的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列an的前n項(xiàng)和Sn=
32
(an-1)
,n∈N+
(1)求an的通項(xiàng)公式;
(2)設(shè)n∈N+,集合An={y|y=ai,i≤n,i∈N+},B={y|y=4m+1,m∈N+}.現(xiàn)在集合An中隨機(jī)取一個(gè)元素y,記y∈B的概率為p(n),求p(n)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列
an
的前n項(xiàng)和為Sn,且Sn=1-an (n∈N*
(I )求數(shù)列
an
的通項(xiàng)公式;
(Ⅱ)已知數(shù)列
bn
的通項(xiàng)公式bn=2n-1,記cn=anbn,求數(shù)列
cn
的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列an}的前n項(xiàng)和為sn,滿足(p-1)sn=p2-an,其中p為正常數(shù),且p≠1.
(1)求證:數(shù)列{an}為等比數(shù)列,并求出{an}的通項(xiàng)公式;
(2)若存在正整數(shù)M,使得當(dāng)n≥M時(shí),a1a4a7…a3n-2>a36恒成立,求出M的最小值;
(3)當(dāng)p=2時(shí),數(shù)列an,2xan+1,2yan+2成等差數(shù)列,其中x,y均為整數(shù),求出x,y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列an的前n項(xiàng)和為Sn
(Ⅰ)若數(shù)列an是等比數(shù)列,滿足2a1+a3=3a2,a3+2是a2,a4的等差中項(xiàng),求數(shù)列an的通項(xiàng)公式;
(Ⅱ)是否存在等差數(shù)列ann∈N*,使對任意n∈N*都有anSn=2n2(n+1)?若存在,請求出所有滿足條件的等差數(shù)列;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案