高為的四棱錐S-ABCD的底面是邊長為1的正方形,點(diǎn)S、A、B、C、D均在半徑為1的同一球面上,則底面ABCD的中心與頂點(diǎn)S之間的距離為(   )

A.            B.        C.1       D.

 

【答案】

C

【解析】

試題分析:設(shè)正方形中心為,球心為O,

在線段的中截面與圓的相交處,

考點(diǎn):球與內(nèi)接棱錐的關(guān)系

點(diǎn)評:此題的關(guān)于在確定S點(diǎn)在線段OE的中截面上

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)四棱錐S-ABCD中,底面ABCD為矩形,∠SCD=90°,∠SBC=90°,二面角S-CD-B為60°,且AB=SC=4.
(1)求證:平面SAB⊥平面ABCD;
(2)求三棱錐C-ASD的高(即以△SAD為底的三棱錐的高).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文做理不做)已知:正四棱錐S-ABCD的高為
3
,斜高為2,設(shè)E為AB中點(diǎn),F(xiàn)為SC中點(diǎn),M為CD邊上的點(diǎn).
(1)求證:EF∥平面SAD;
(2)試確定點(diǎn)M的位置,使得平面EFM⊥底面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•保定一模)四棱錐S-ABCD中,四邊形ABCD為矩形,M為AB中點(diǎn),且△SAB為等腰直角三角形,SA=SB=2,SC⊥BD,DA⊥平面SAB.
(1)求證:平面SBD⊥平面SMC
(2)設(shè)四棱錐S-ABCD外接球的球心為H,求棱錐H-MSC的高;
(3)求平面SAD與平面SMC所成的二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•保定一模)四棱錐S-ABCD中,四邊形ABCD為矩形,M為AB中點(diǎn),且△SAB為等腰直角三角形,SA=SB=2,SC⊥BD,DA⊥平面SAB.
(1)求證:平面SBD⊥平面SMC
(2)設(shè)四棱錐S-ABCD外接球的球心為H,求棱錐H-MSC的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:重慶市高考真題 題型:單選題

高為的四棱錐S-ABCD的底面是邊長為1的正方形,點(diǎn)S,A,B,C,D均在半徑為1的同一球面上,則底面AB-CD的中心與頂點(diǎn)S之間的距離為
[     ]
A.
B.
C.1
D.

查看答案和解析>>

同步練習(xí)冊答案