已知函數(shù)f(x)=ax2+bx(a<0),對(duì)于數(shù)列{an},設(shè)它的前n項(xiàng)的和為Sn,且Sn=f(n)(n∈N*).
(1)證明數(shù)列{an}是遞減的等差數(shù)列;
(2)證明所有的點(diǎn)Mk(k,)(k∈N*)在同一直線L1上;
(3)設(shè)過(guò)點(diǎn)(1,a1)、(2,a2)的直線為L(zhǎng)2,求L1與L2的夾角的最大值.
證明(1)Sn=an2+bn,a1=a+b an=sn-sn-1=(2n-1)a+b n≥2 當(dāng)n=1時(shí)也適合. ∴an=(2n-1)a+b ∵an-an-1=2a(定值) ∴數(shù)列{an}為等差數(shù)列 又∵an-an-1=2a<0 即an<an-1 ∴{an}為遞減數(shù)列 證明(2)設(shè)任意兩點(diǎn)Mk(k,),Mn(n,) n≠k 兩點(diǎn)斜率==a(實(shí)值) 所以所有的點(diǎn)在同一直線y-(a+b)=a(x-1)上 (法二,f(k)==ak+b) 解(3)L1方程y=ax+b k1=a N1(1,a+b) N2(2,3a+b) k2=2a tanθ==(a<0) 。 ∵|+2a|≥ ∴tanθ≤ 當(dāng)且僅當(dāng)a=-時(shí)取等號(hào) 又tanθ在(0,)上遞增 ∴θmax=arc |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:成功之路·突破重點(diǎn)線·數(shù)學(xué)(學(xué)生用書(shū)) 題型:044
已知函數(shù)f(x)=2acos2x+bsinxcosx,且f(0)=2,f()=,
(1)求使f(x)>2的x的集合;
(2)若α-β≠kπ(k∈Z),且f(α)=f(β),求tan(α+β)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:成功之路·突破重點(diǎn)線·數(shù)學(xué)(學(xué)生用書(shū)) 題型:044
已知函數(shù)f(x)=x3+(m-4)x2-3mx+(n-6)(x∈R)的圖象關(guān)于原點(diǎn)對(duì)稱,m,n為實(shí)常數(shù).
(1)求m,n的值;
(2)試用單調(diào)性的定義證明f(x)在區(qū)間[-2,2]上是單調(diào)函數(shù)
(3)當(dāng)x∈[-2,2]時(shí),不等式f(x)≥(n-logma)logma恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:廣東省開(kāi)平市長(zhǎng)師中學(xué)2007年高考數(shù)學(xué)文科第一輪復(fù)習(xí)階段性考試卷 題型:044
解答題
已知函數(shù)在同一周期內(nèi)有最高點(diǎn)和最低點(diǎn),求此函數(shù)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:龍門(mén)中學(xué)、新豐一中、連平中學(xué)三校聯(lián)考試題、高三數(shù)學(xué)(理) 題型:044
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2007龍門(mén)中學(xué)、新豐一中、連平中學(xué)三校聯(lián)考試題、高三數(shù)學(xué)(文) 題型:044
|
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com