兩人相約在7點到8點在某地會面,先到者等候另一個人20分鐘方可離去.試求這兩人能會面的概率?

概率為

解析試題分析:建立坐標系,找出會面的區(qū)域,用會面的區(qū)域面積:總區(qū)域面積.
以X、Y分別表示兩人到達時刻,建立直角坐標系如圖:

則0≤X≤60, 0≤Y≤60。兩人能會面的充要條件是|X-Y|≤20
∴P=
考點:幾何概型.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
根據(jù)世行2013年新標準,人均GDP低于1035美元為低收入國家;人均GDP為1035-4085元為中等偏下收入國家;人均GDP為4085-12616美元為中等偏上收入國家;人均GDP不低于12616美元為高收入國家.某城市有5個行政區(qū),各區(qū)人口占該城市人口比例及人均GDP如下表:

(1)判斷該城市人均GDP是否達到中等偏上收入國家標準;
(2)現(xiàn)從該城市5個行政區(qū)中隨機抽取2個,求抽到的2個行政區(qū)人均GDP都達到中等偏上收入國家標準的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一批產(chǎn)品需要進行質(zhì)量檢驗,質(zhì)檢部門規(guī)定的檢驗方案是:先從這批產(chǎn)品中任取3件作檢驗,若3件產(chǎn)品都是合格品,則通過檢驗;若有2件產(chǎn)品是合格品,則再從這批產(chǎn)品中任取1件作檢驗,這1件產(chǎn)品是合格品才能通過檢驗;若少于2件合格品,則不能通過檢驗,也不再抽檢. 假設(shè)這批產(chǎn)品的合格率為80%,且各件產(chǎn)品是否為合格品相互獨立.
(1)求這批產(chǎn)品通過檢驗的概率;
(2)已知每件產(chǎn)品檢驗費為125元,并且所抽取的產(chǎn)品都要檢驗,記這批產(chǎn)品的檢驗費為元,求的概率分布及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

隨機抽取某中學甲、乙兩班各10名同學,測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如下圖.

(1)根據(jù)莖葉圖判斷哪個班的平均身高較高;
(2)計算甲班的樣本方差;
(3)現(xiàn)從乙班這10名同學中隨機抽取兩名身高不低于173 cm的同學,求身高為176 cm的同學被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲、乙兩個籃球運動員互不影響地在同一位置投球,命中率分別為,且乙投球次均未命中的概率為
(1)求乙投球的命中率
(2)若甲投球次,乙投球次,兩人共命中的次數(shù)記為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某中學將100名高一新生分成水平相同的甲、乙兩個“平行班”,每班50人.陳老師采用A、B兩種不同的教學方式分別在甲、乙兩個班級進行教改實驗.為了了解教學效果,期末考試后,陳老師分別從兩個班級中各隨機抽取20名學生的成績進行統(tǒng)計,作出莖葉圖如下.記成績不低于90分者為“成績優(yōu)秀”.


 

6
9
3 6 7 9 9
9 5 1 0
8
0 1 5 6
9 9 4 4 2
7
3 4 5 8 8 8
8 8 5 1 1 0
6
0 7 7
4 3 3 2
5
2 5
 
(1)在乙班樣本中的20個個體中,從不低于86分的成績中隨機抽取2個,求抽出的兩個均“成績優(yōu)秀”的概率;
(2)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有90%的把握認為:“成績優(yōu)秀”與教學方式有關(guān).
 
甲班(A方式)
乙班(B方式)
總計
成績優(yōu)秀
 
 
 
成績不優(yōu)秀
 
 
 
總計
 
 
 
 
附:,其中n=a+b+c+d.)
 P(K2≥k)
0.25
0.15
0.10
0.05
0.025
0.01
0.005
0.001
   k
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

受轎車在保修期內(nèi)維修費等因素的影響,企業(yè)生產(chǎn)每輛轎車的利潤與該轎車首次出現(xiàn)故障的時間有關(guān).某轎車制造廠生產(chǎn)甲、乙兩種品牌轎車,保修期均為2年.現(xiàn)從該廠已售出的兩種品牌轎車中各隨機抽取50輛,統(tǒng)計數(shù)據(jù)如下:

品牌

 
 

 
首次出現(xiàn)故障時間x(年)
0<x≤1
1<x≤2
x>2
0<x≤2
x>2
轎車數(shù)量(輛)
2
3
45
5
45
每輛利潤(萬元)
1
2
3
1.8
2.9
 
將頻率視為概率,解答下列問題:
(1)從該廠生產(chǎn)的甲品牌轎車中隨機抽取一輛,求其首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;
(2)若該廠生產(chǎn)的轎車均能售出,記生產(chǎn)一輛甲品牌轎車的利潤為X1,生產(chǎn)一輛乙品牌轎車的利潤為X2,分別求X1,X2的分布列;
(3)該廠預(yù)計今后這兩種品牌轎車銷量相當,由于資金限制,只能生產(chǎn)其中一種品牌的轎車.若從經(jīng)濟效益的角度考慮,你認為應(yīng)生產(chǎn)哪種品牌的轎車?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為加快新能源汽車產(chǎn)業(yè)發(fā)展,推進節(jié)能減排,國家對消費者購買新能源汽車給予補貼,其中對純電動乘用車補貼標準如下表:

新能源汽車補貼標準
 
車輛類型
 
續(xù)駛里程(公里)
 

 

 

 
純電動乘用車
 
萬元/輛
 
萬元/輛
 
萬元/輛
 
某校研究性學習小組,從汽車市場上隨機選取了輛純電動乘用車,根據(jù)其續(xù)駛里程(單次充電后能行駛的最大里程)作出了頻率與頻數(shù)的統(tǒng)計表:
分組
 
頻數(shù)
 
頻率
 

 

 

 

 

 

 

 

 

 
合計
 

 

 
 
(1)求,的值;
(2)若從這輛純電動乘用車中任選輛,求選到的輛車續(xù)駛里程都不低于公里的概率;
(3)若以頻率作為概率,設(shè)為購買一輛純電動乘用車獲得的補貼,求的分布列和數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

袋中共有10個大小相同的編號為1、2、3的球,其中1號球有1個,2號球有3個,3號球有6個.
(1)從袋中任意摸出2個球,求恰好是一個2號球和一個3號球的概率;
(2)從袋中任意摸出2個球,記得到小球的編號數(shù)之和為,求隨機變量的分布列和數(shù)學期望

查看答案和解析>>

同步練習冊答案