【題目】已知點A(0,﹣2),橢圓E: =1(a>b>0)的離心率為 ,F(xiàn)是橢圓的焦點,直線AF的斜率為 ,O為坐標原點. (Ⅰ)求E的方程;
(Ⅱ)設過點A的直線l與E相交于P,Q兩點,當△OPQ的面積最大時,求l的方程.
【答案】解:(Ⅰ) 設F(c,0),由條件知 ,得 又 , 所以a=2,b2=a2﹣c2=1,故E的方程 .
(Ⅱ)依題意當l⊥x軸不合題意,故設直線l:y=kx﹣2,設P(x1 , y1),Q(x2 , y2)
將y=kx﹣2代入 ,得(1+4k2)x2﹣16kx+12=0,
當△=16(4k2﹣3)>0,即 時,
從而
又點O到直線PQ的距離 ,所以△OPQ的面積 = ,
設 ,則t>0, ,
當且僅當t=2,k=± 等號成立,且滿足△>0,
所以當△OPQ的面積最大時,l的方程為:y= x﹣2或y=﹣ x﹣2
【解析】(Ⅰ)通過離心率得到a、c關系,通過A求出a,即可求E的方程;(Ⅱ)設直線l:y=kx﹣2,設P(x1 , y1),Q(x2 , y2)將y=kx﹣2代入 ,利用△>0,求出k的范圍,利用弦長公式求出|PQ|,然后求出△OPQ的面積表達式,利用換元法以及基本不等式求出最值,然后求解直線方程.
科目:高中數(shù)學 來源: 題型:
【題目】下列各函數(shù)在其定義域中,既是奇函數(shù),又是增函數(shù)的是( )
A.y=x+1
B.y=﹣x3
C.y=﹣
D.y=x|x|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知y=f(x)是定義域為R的奇函數(shù),當x∈[0,+∞)時,f(x)=x2﹣2x.
(Ⅰ)寫出函數(shù)y=f(x)的解析式;
(Ⅱ)若方程f(x)=a恰有3個不同的解,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若以曲線上任意一點為切點作切線,曲線上總存在異于的點,以點為切點作切線,且,則稱曲線具有“可平行性”,現(xiàn)有下列命題:
①函數(shù)的圖象具有“可平行性”;
②定義在的奇函數(shù)的圖象都具有“可平行性”;
③三次函數(shù)具有“可平行性”,且對應的兩切點, 的橫坐標滿足;
④要使得分段函數(shù)的圖象具有“可平行性”,當且僅當.
其中的真命題個數(shù)有()
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)(為自然對數(shù)的底數(shù)),, .
(1)若是的極值點,且直線分別與函數(shù)和的圖象交于,求兩點間的最短距離;
(2)若時,函數(shù)的圖象恒在的圖象上方,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=|x﹣1|+|x﹣a|,
(1)若a=﹣1,解不等式f(x)≥3;
(2)如果x∈R,f(x)≥2,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的函數(shù)F(x)的圖象,由指數(shù)函數(shù)f(x)=ax與冪函數(shù)g(x)=xb“拼接”而成.
(1)求F(x)的解析式;
(2)比較ab與ba的大小;
(3)已知(m+4)﹣b<(3﹣2m)﹣b , 求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com