【題目】給出下列四個(gè)結(jié)論:
①?gòu)?,2,3,4,5中任取2個(gè)不同的數(shù),事件“取到的2個(gè)數(shù)之和為偶數(shù)”,事件“取到的
2個(gè)數(shù)均為偶數(shù)”,則;
②某班共有45名學(xué)生,其中30名男同學(xué),15名女同學(xué),老師隨機(jī)抽查了5名同學(xué)的作業(yè),用表示抽查到的女生的人數(shù),則;
③設(shè)隨機(jī)變量服從正態(tài)分布,,則;
④由直線,,曲線及軸所圍成的圖形的面積是.
其中所有正確結(jié)論的序號(hào)為__________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)h(x)=(m2-5m+1)xm+1為冪函數(shù),且為奇函數(shù).
(I)求m的值;
(II)求函數(shù)g(x)=h(x)+,x∈的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在幾何體中,,均與底面垂直,且為直角梯形,,,,,分別為線段,的中點(diǎn),為線段上任意一點(diǎn).
(1)證明:平面.
(2)若,證明:平面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市交通部門為了對(duì)該城市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車的推行情況進(jìn)行問(wèn)卷調(diào)查,并將問(wèn)卷中的這100人根據(jù)其滿意度評(píng)分值(百分制)按照,,,分成5組,制成如圖所示頻率分直方圖.
(1)求圖中x的值;
(2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù);
(3)已知滿意度評(píng)分值在內(nèi)的男生數(shù)與女生數(shù)的比為,若在滿意度評(píng)分值為的人中隨機(jī)抽取2人進(jìn)行座談,求2人均為男生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某二手交易市場(chǎng)對(duì)某型號(hào)的二手汽車的使用年數(shù)()與銷售價(jià)格(單位:萬(wàn)元/輛)進(jìn)行整理,得到如下的對(duì)應(yīng)數(shù)據(jù):
使用年數(shù) | 2 | 4 | 6 | 8 | 10 |
銷售價(jià)格 | 16 | 13 | 9.5 | 7 | 4.5 |
(I)試求關(guān)于的回歸直線方程.
(參考公式:,)
(II)已知每輛該型號(hào)汽車的收購(gòu)價(jià)格為萬(wàn)元,根據(jù)(I)中所求的回歸方程,預(yù)測(cè)為何值時(shí),銷售一輛該型號(hào)汽車所獲得的利潤(rùn)最大?(利潤(rùn)=銷售價(jià)格-收購(gòu)價(jià)格)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列命題:①函數(shù) 在上的值域?yàn)?/span>;②函數(shù)是奇函數(shù);③函數(shù)在上是減函數(shù);其中正確的個(gè)數(shù)為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了了解學(xué)生每天平均課外閱讀的時(shí)間(單位:分鐘),從本校隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查,根據(jù)收集的數(shù)據(jù),得到學(xué)生每天課外閱讀時(shí)間的頻率分布直方圖,如圖所示,若每天課外閱讀時(shí)間不超過(guò)30分鐘的有45人.
(Ⅰ)求,的值;
(Ⅱ)根據(jù)頻率分布直方圖,估計(jì)該校學(xué)生每天課外閱讀時(shí)間的中位數(shù)及平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題a2x2+ax﹣2=0在[﹣1,1]上有解;命題q:只有一個(gè)實(shí)數(shù)x滿足不等式x2+2ax+2a≤0,若命題“p”或“q”是假命題,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形所在平面與半圓弧所在平面垂直,是上異于,的點(diǎn).
(1)證明:平面平面;
(2)在線段上是否存在點(diǎn),使得平面?說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com