【題目】已知某射擊運(yùn)動(dòng)員,每次擊中目標(biāo)的概率都是0.8.現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員射擊4次至少擊中3次的概率:先由計(jì)算器算出09之間取整數(shù)值的隨機(jī)數(shù),指定0,1表示沒(méi)有擊中目標(biāo),2,3,4,5,6,7,8,9表示擊中目標(biāo);因?yàn)樯鋼?/span>4,故以每4個(gè)隨機(jī)數(shù)為一組,代表射擊4次的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):

5727 0293 7140 9857 0347

4373 8636 9647 1417 4698

0371 6233 2616 8045 6011

3661 9597 7424 6710 4281

據(jù)此估計(jì),該射擊運(yùn)動(dòng)員射擊4次至少擊中3次的概率為_____.

【答案】0.75

【解析】由題意知,

20組隨機(jī)數(shù)中表示射擊4次至少擊中3次的有:

5727 0293 9857 0347 4373 8636 9647 4698 6233 2616 8045 3661 9597 7424 4281,

15,

故所求概率為=0.75.

故答案為:0.75.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】農(nóng)科院的專(zhuān)家為了了解新培育的甲、乙兩種麥苗的長(zhǎng)勢(shì)情況,從甲、乙兩種麥苗的試驗(yàn)田中各抽取6株麥苗測(cè)量麥苗的株高,數(shù)據(jù)如下:(單位:cm)

甲:9,10,11,12,10,20

乙:8,14,13,10,12,21.

(1)在給出的方框內(nèi)繪出所抽取的甲、乙兩種麥苗株高的莖葉圖;

(2)分別計(jì)算所抽取的甲、乙兩種麥苗株高的平均數(shù)與方差,并由此判斷甲、乙兩種麥苗的長(zhǎng)勢(shì)情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)員工500人參加學(xué)雷鋒活動(dòng),按年齡共分六組,得頻率分布直方圖如下:

(1)現(xiàn)在要從年齡較小的第1、2、3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組的各抽取多少人?

(2)在第(1)問(wèn)的前提下,從這6人中隨機(jī)抽取2人參加社區(qū)活動(dòng),求至少有1人年齡在第3組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】街道旁邊有一游戲:在鋪滿邊長(zhǎng)為9 cm的正方形塑料板的寬廣地面上,擲一枚半徑為1 cm的小圓板,規(guī)則如下:每擲一次交5角錢(qián),若小圓板壓在正方形的邊上,可重?cái)S一次;若擲在正方形內(nèi),須再交5角錢(qián)可玩一次;若擲在或壓在塑料板的頂點(diǎn)上,可獲得一元錢(qián),試問(wèn):

(1)小圓板壓在塑料板的邊上的概率是多少?

(2)小圓板壓在塑料板頂點(diǎn)上的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l經(jīng)過(guò)拋物線y2=6x的焦點(diǎn)F,且與拋物線相交于AB兩點(diǎn).

(1)若直線l的傾斜角為60°,求|AB|的值;

(2)|AB|=9,求線段AB的中點(diǎn)M到準(zhǔn)線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx+ax在點(diǎn)(t,f(t))處的切線方程為y=3x+1
(1)求a的值;
(2)已知k≤2,當(dāng)x>1時(shí),f(x)>k(1﹣ )+2x﹣1恒成立,求實(shí)數(shù)k的取值范圍;
(3)對(duì)于在(0,1)中的任意一個(gè)常數(shù)b,是否存在正數(shù)x0 , 使得e + x02<1?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),圓C的參數(shù)方程為 (θ為常數(shù)).
(1)求直線l和圓C的普通方程;
(2)若直線l與圓C有公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 )的左焦點(diǎn)為,離心率為

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)為坐標(biāo)原點(diǎn), 為直線上一點(diǎn),過(guò)的垂線交橢圓于, .當(dāng)四邊形是平行四邊形時(shí),求四邊形的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)生在開(kāi)學(xué)季準(zhǔn)備銷(xiāo)售一種文具套盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開(kāi)學(xué)季內(nèi),每售出盒該產(chǎn)品獲利潤(rùn)元;未售出的產(chǎn)品,每盒虧損.根據(jù)歷史資料,得到開(kāi)學(xué)季市場(chǎng)需求量的頻率分布直方圖,如圖所示。該同學(xué)為這個(gè)開(kāi)學(xué)季購(gòu)進(jìn)了盒該產(chǎn)品,以(單位:盒,)表示這個(gè)開(kāi)學(xué)季內(nèi)的市場(chǎng)需求量,(單位:元)表示這個(gè)開(kāi)學(xué)季內(nèi)經(jīng)銷(xiāo)該產(chǎn)品的利潤(rùn)。

(1)求市場(chǎng)需求量在[100,120]的概率;

(2)根據(jù)直方圖估計(jì)這個(gè)開(kāi)學(xué)季內(nèi)市場(chǎng)需求量的中位數(shù);

(3)將表示為的函數(shù),并根據(jù)直方圖估計(jì)利潤(rùn)不少于元的概率。

查看答案和解析>>

同步練習(xí)冊(cè)答案