分析 利用參數(shù)分離法進(jìn)行轉(zhuǎn)化,構(gòu)造函數(shù)求出函數(shù)的單調(diào)性和極值即可得到結(jié)論.
解答 解:若存在x0∈[e,e2],使得f(x0)≤$\frac{1}{4}$lnx0成立,
則由f(x)=x-axlnx-$\frac{1}{4}$lnx≤0,得axlnx≥x-$\frac{1}{4}$lnx,
即a≤$\frac{4x-lnx}{4xlnx}$,設(shè)g(x)=$\frac{4x-lnx}{4xlnx}$
則g′(x)=$\frac{-4x+l{n}^{2}x}{4{x}^{2}l{n}^{2}x}$,
令h(x)=-4x+ln2x,
則h′(x)=-4x+$\frac{2lnx}{x}$=$\frac{-4{x}^{2}+2lnx}{x}$,
再令m(x)=-4x2+2lnx,
則m′(x)=-8x+$\frac{2}{x}$<0在x∈[e,e2]恒成立,
∴m(x)在在[e,e2]為減函數(shù),
∴m(x)max=m(e)=-4e2+2lne<0,
∴h′(x)<0,在x∈[e,e2]恒成立
∴h(x)在在[e,e2]為減函數(shù),
∴h(x)max=h(e)=-4e+ln2e=-4e+1<0,
∴g(x)<0,在x∈[e,e2]恒成立
∴g(x)在[e,e2]為減函數(shù),
∴g(x)max=g(e)=1-$\frac{1}{4e}$,
∴a≤1-$\frac{1}{4e}$
故答案為:(-∞,1-$\frac{1}{4e}$]
點(diǎn)評(píng) 本題主要考查根的存在性性問(wèn)題,利用參數(shù)分離法,構(gòu)造函數(shù)求出函數(shù)的極值,注意本題是存在性問(wèn)題,不是恒成立問(wèn)題,注意兩者的區(qū)別.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (8,9] | B. | (0,8) | C. | [8,9] | D. | (8,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com