A. | 2 | B. | 2$\sqrt{5}$ | C. | 3 | D. | 2+$\sqrt{3}$ |
分析 由直線過定點(diǎn)可得A,B的坐標(biāo),斜率可知兩直線垂直,可得|PA|2+|PB|2=|AB|2=10,由基本不等式可得.
解答 解:由題意可得動(dòng)直線x+my=0過定點(diǎn)A(0,0),斜率k=$-\frac{1}{m}$,
直線mx-y-m+3=0可化為(x-1)m+3-y=0,斜率k=m.
令$\left\{\begin{array}{l}{x-1=0}\\{3-y=0}\end{array}\right.$可解$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$,即B(1,3),
又1×m+m×(-1)=0,故兩直線垂直,
即交點(diǎn)為P,
∴|PA|2+|PB|2=|AB|2=10,
由基本不等式可得10=|PA|2+|PB|2
=(|PA|+|PB|)2-2|PA||PB|
≥(|PA|+|PB|)2-2$(\frac{|PA|+|PB|}{2})^{2}$
=$\frac{1}{2}$(|PA|+|PB|)2,
∴(|PA|+|PB|)2≤20,
解得:|PA|+|PB|≤$2\sqrt{5}$,
當(dāng)且僅當(dāng)|PA|=|PB|$\sqrt{5}$時(shí)取等號(hào).
故選:B.
點(diǎn)評 本題考查兩點(diǎn)間的距離公式,涉及直線過定點(diǎn)和整體利用基本不等式求最值,屬中檔題
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -(x+4)2+1 | B. | -(x-4)2+1 | C. | -(x-4)2-1 | D. | -(x+4)2-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
留在第一教學(xué)樓 | 不留在第一教學(xué)樓 | 總計(jì) | |
男生 | 10 | 16 | |
女生 | 5 | 14 | |
總計(jì) | 30 |
P(K2≥k) | 0.40 | 0.25 | 0.10 | 0.010 |
k | 0.708 | 1.323 | 2.706 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 4 | C. | -2或4 | D. | -2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com