【題目】設函數(shù).
(1)當時,求函數(shù)的最大值;
(2)令其圖象上任意一點處切線的斜率恒成立,求實數(shù)的取值范圍;
(3)當,,方程有唯一實數(shù)解,求正數(shù)的值
【答案】(1)(2)(3)
【解析】
(1)對函數(shù)進行求導,判斷其在單調(diào)遞增,在單調(diào)遞減,從而得到最大值為;
(2)求出函數(shù),,則其導數(shù)小于等于在恒成立,進而求出的取值范圍;
(3)方程有唯一實數(shù)解,設,利用導數(shù)研究函數(shù)的圖象特征,設為方程的唯一解,得到,把方程組轉(zhuǎn)化成,再利用導數(shù)研究該方程的根,最后根據(jù)根的唯一性,得到與的關系,再求出正數(shù)的值.
(1)依題意,知的定義域為,
當時,,
令,解得.
當時,,此時單調(diào)遞增;
當時,,此時單調(diào)遞減.
所以的極大值為,此即為最大值.
(2),,則有,在上恒成立,所以,.
當時,取得最大值,所以.
(3)因為方程有唯一實數(shù)解,所以有唯一實數(shù)解,
設,則.
令,,
因為,,所以(舍去),,
當時,,在上單調(diào)遞減,
當時,,在上單調(diào)遞增,
當時,,取最小值.
則,即,
所以,
因為,所以
設函數(shù),
因為當時,是增函數(shù),所以至多有一解,
又,所以方程的解為,即,解得.
科目:高中數(shù)學 來源: 題型:
【題目】從某部門參加職業(yè)技能測試的2000名員工中抽取100名員工,將其成績(滿分100分)按照[50,60),[60,70),[70,80),[80,90),[90,100)分成5組,得到如圖所示的頻率分布直方圖.
(1)估計該部門參加測試員工的成績的眾數(shù)中位數(shù);
(2)估計該部門參加測試員工的平均成績;
(3)若成績在80分及以上為優(yōu)秀,請估計該部門2000名員工中成績達到優(yōu)秀的人數(shù)為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的圖象在點處切線的方程;
(2)討論函數(shù)的極值;
(3)若對任意的成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是:( )
(1)使的值為的賦值語句是;
(2)用秦九韶算法求多項式在的值時,的值;
(3);
(4)用輾轉(zhuǎn)相除法求得和的最大公約數(shù)是.
A.(1)(2)B.(2)(3)C.(1)(4)D.(2)(4)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x-ax+(a-1),。
(1)討論函數(shù)的單調(diào)性;
(2)證明:若,則對任意x,x,xx,有。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中為真命題的是( )
A.命題“若,則”的否命題
B.命題“若x>y,則x>|y|”的逆命題
C.命題“若x=1,則”的否命題
D.命題“已知,若,則a>b”的逆命題、否命題、逆否命題均為真命題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)為奇函數(shù).
(1)求常數(shù)的值;
(2)判斷并用定義法證明函數(shù)的單調(diào)性;
(3)函數(shù)的圖象由函數(shù)的圖象先向右平移個單位,再向上平移個單位得到,寫出的一個對稱中心,若,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線l的參數(shù)方程為 (t為參數(shù)),在以直角坐標系的原點O為極點,x軸的正半軸為極軸的極坐標系中,曲線C的極坐標方程為
(1)求曲線C的直角坐標方程和直線l的普通方程;
(2)若直線l與曲線C相交于A,B兩點,求△AOB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com