1.已知數(shù)列{an}滿足a1=1,an+1=2an+3,n∈N*
(Ⅰ)求證:數(shù)列{an+3}是等比數(shù)列;
(Ⅱ)求數(shù)列{nan}的前n項和Sn

分析 (I)an+1=2an+3,n∈N*.變形為an+1+3=2(an+3),利用等比數(shù)列的定義即可證明.
(Ⅱ)由(I)可得an=2n+1-3,因此nan=n•2n+1-3n.利用“錯位相減法”、等比數(shù)列與等差數(shù)列的求和公式即可得出.

解答 (I)證明:∵an+1=2an+3,n∈N*.∴an+1+3=2(an+3),
∴數(shù)列{an+3}是等比數(shù)列,公比為2,首項為4.
(Ⅱ)解:由(I)可得:an+3=4×2n-1=2n+1,∴an=2n+1-3,
∴nan=n•2n+1-3n.
設數(shù)列{n•2n+1}的前n項和為An,
則An=22+2×23+3×24+…+n•2n+1,
2An=23+2×24+…+(n-1)•2n+1+n•2n+2,
∴-An=22+23+…+2n+1-n•2n+2=$\frac{4({2}^{n}-1)}{2-1}$-n•2n+2=(1-n)•2n+2-4,
∴An=(n-1)•2n+2+4,
∴數(shù)列{nan}的前n項和Sn=(n-1)•2n+2+4-$\frac{3n(n+1)}{2}$.

點評 本題考查了“錯位相減法”、等比數(shù)列與等差數(shù)列的定義通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=|x+1|,g(x)=2|x|+a.
(1)當a=-1時,解不等式f(x)≤g(x);
(2)若存在x0∈R,使得f(x0)≥$\frac{1}{2}$g(x0),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.函數(shù)f(x)=|x-1|+|x+1|的增區(qū)間為[1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.設全集U={0,1,2,3,4},集合A={0,1,2},集合B={2,3},則(∁UA)∪B={2,3,4}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.在平面直角坐標系xOy中,以坐標原點為極點,x軸正半軸為極軸建立坐標系,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2+cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)).
(1)求曲線C1的直角坐標方程;
(2)曲線C2的極坐標方程為θ=$\frac{π}{6}$(ρ∈R),求C1與C2的公共點的極坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知圓O:x2+y2=4與x軸負半軸的交點為A,點P在直線l:$\sqrt{3}$x+y-a=0上,過點P作圓O的切線,切點為T
(1)若a=8,切點T($\sqrt{3}$,-1),求點P的坐標;
(2)若PA=2PT,求實數(shù)a的取值范圍;
(3)若不過原點O的直線與圓O交于B,C兩點,且滿足直線OB,BC,OC的斜率依次成等比數(shù)列,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知$f({2^x})=\frac{1}{x}$,則f(3)=( 。
A.$\frac{1}{3}$B.$\frac{1}{8}$C.log32D.log23

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=ax2+blnx在x=1處有極值$\frac{1}{2}$.
(Ⅰ)求a,b的值;
(Ⅱ)求f(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.德國著名數(shù)學家狄利克雷在數(shù)學領域成就顯著,以其名命名的函數(shù)f(x)=$\left\{\begin{array}{l}1,x為有理數(shù)\\ 0,x為無理數(shù)\end{array}$,稱為狄利克雷函數(shù),則關于函數(shù)f(x)有以下四個命題:
①f(f(x))=1;
②函數(shù)f(x)是偶函數(shù);
③任意一個非零有理數(shù)T,f(x+T)=f(x)對任意x∈R恒成立;
④存在三個點A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC為等邊三角形.
其中真命題的個數(shù)是( 。
A.4B.3C.2D.1

查看答案和解析>>

同步練習冊答案