平行六面體中,若( 。
A.1B.C.D.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直棱柱

(I)證明:
(II)求直線所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在長方體ABCD-A1B1C1D1中,AB=2,BC=B1B=1,M、N分別是AD、DC的中點.
(1)求證:MN//A1C1;
(2)求:異面直線MN與BC1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在底面為直角梯形的四棱錐平面,,,

⑴求證:
⑵求直線與平面所成的角;
⑶設點在棱上,,若∥平面,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為AB與BB1的中點,

(Ⅰ)求證:EF⊥平面A1D1B ;
(Ⅱ)求二面角F-DE-C大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

正四棱柱中,底面邊長為,側棱長為4,E,F(xiàn)分別為棱AB,CD的中點,.則三棱錐的體積V(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖8,在直角梯形中,,,且.現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面互相垂直,如圖9.
(1)求證:平面平面;
(2)求平面與平面所成銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分10分)
已知三棱錐P-ABC中,PA⊥平面ABC,AB⊥AC,,N為AB上一點,AB="4AN," M、S分別為PB,BC的中點.以A為原點,射線AB,AC,AP分別為x,y,z軸正向建立如圖空間直角坐標系.
(Ⅰ)證明:CM⊥SN;
(Ⅱ)求SN與平面CMN所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,正方體ABCD-A1B1C1D1,M為AA1的中點,N為A1B1上的點,且滿足A1N=NB1,P為底面正方形A1B1C1D1的中心.求證:MN⊥MC,MP⊥B1C.

查看答案和解析>>

同步練習冊答案