函數(shù)y=x2+2x-1的值域是( 。
A、[-1,+∞)
B、[-2,+∞)
C、[1,+∞)
D、[2,+∞)
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:對(duì)二次函數(shù)y=x2+2x-2進(jìn)行配方,利用函數(shù)的性質(zhì)即可求得其值域.
解答: 解:配方可得y=x2+2x-1=(x+1)2-2≥-2,
∴該函數(shù)的值域是[-2,+∞).
故選:B.
點(diǎn)評(píng):考查函數(shù)值域的概念以及通過配方求二次函數(shù)值域的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于“a,b,c”是不全相等的正數(shù),給出下列判斷:
①(a-b)2+(b-c)2+(c-a)2≠0;
②a=b與b=c及a=c中至少有一個(gè)成立;
③a≠c,b≠c,a≠b不能同時(shí)成立,
其中判斷正確的個(gè)數(shù)是( 。
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)的一個(gè)焦點(diǎn)為(
5
,0
),離心率為
5
3
.求橢圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓N的標(biāo)準(zhǔn)方程為(x-5)2+(y-6)2=a2(a>0)
(1)若點(diǎn)M(6,9)在圓上,求a的值;
(2)已知點(diǎn)P(3,3)和點(diǎn)Q(5,3),線段PQ(不含端點(diǎn))與圓N有且只有一個(gè)公共點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2
3
x(x2-3ax-
9
2
)(a∈R),若函數(shù)f(x)的圖象上點(diǎn)P(1,m)處的切線方程為3x-y+b=0,則m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知非零向量
a
,
b
滿足向量
a
+
b
與向量
a
-
b
的夾角為
π
2
,那么下列結(jié)論中一定成立的是(  )
A、
a
=
b
B、|
a
|=|
b
|
C、
a
b
D、
a
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

5.已知函數(shù)f(x)=|x+1|+|2x-1|,若關(guān)于x不等式f(x)≥|m-1|+|m-2|的解集是R,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=2,an+1=2an-n+1(n∈N*),數(shù)列{an}的前n項(xiàng)和為Sn
(1)證明:數(shù)列{an-n}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)求Sn;
(3)證明:Sn+1>Sn+2n+n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x+1)=3x+4,則f(x)的解析式為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案