分析 (1)利用三角恒等變換化簡函數(shù)f(x)為正弦型函數(shù),按五個關鍵點列表,描點并用光滑的曲線連接成圖,由圖寫出f(x)的單調(diào)遞減區(qū)間;
(2)由(1)中所作的函數(shù)圖象,求出f(x)在$x∈[{0,\frac{π}{2}}]$時的最值.
解答 解:(1)因為函數(shù)$f(x)=sin({2x+\frac{π}{6}})+2{cos^2}x$
=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x+cos2x+1
=$\sqrt{3}({\frac{1}{2}sin2x+\frac{{\sqrt{3}}}{2}cos2x})+1$
=$\sqrt{3}({sin2xcos\frac{π}{3}+cos2xsin\frac{π}{3}})+1$
=$\sqrt{3}sin({2x+\frac{π}{3}})+1$,
所以$f(x)=\sqrt{3}sin({2x+\frac{π}{3}})+1$,
按五個關鍵點列表,得
$2x+\frac{π}{3}$ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | $-\frac{π}{6}$ | $\frac{π}{12}$ | $\frac{π}{3}$ | $\frac{7π}{12}$ | $\frac{5π}{6}$ |
y | 1 | $1+\sqrt{3}$ | 1 | $1-\sqrt{3}$ | 1 |
點評 本題考查了三角恒等變換與五點法畫圖問題,是基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 命題¬p是真命題 | |
B. | 命題p是特稱命題 | |
C. | 命題p是全稱命題 | |
D. | 命題p既不是全稱命題也不是特稱命題 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{5}}{5}$ | B. | $\frac{6\sqrt{5}}{5}$ | C. | $\frac{8\sqrt{5}}{5}$ | D. | $\frac{4\sqrt{5}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x2=4y | B. | x2=2$\sqrt{3}$y | C. | x2=6y | D. | x2=2$\sqrt{2}$y |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com