如果α、β是關(guān)于x的方程lg(3x)lg(5x)=1的兩個(gè)實(shí)根,求αβ的積.
考點(diǎn):函數(shù)的零點(diǎn)與方程根的關(guān)系
專(zhuān)題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:方程lg(3x)lg(5x)=1化為lg2x+(lg3+lg5)lgx+lg3lg5-1=0,可得兩根之和為:lgα+lgβ=-(lg3+lg5),即可求αβ的積.
解答: 解:方程lg(3x)lg(5x)=1可化為:(lgx+lg3)(lgx+lg5)-1=0,
展開(kāi)整理得:lg2x+(lg3+lg5)lgx+lg3lg5-1=0,
所以?xún)筛蜑椋簂gα+lgβ=-(lg3+lg5),
解得αβ=
1
15
點(diǎn)評(píng):本題考查方程根的求解,考查對(duì)數(shù)知識(shí),考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα=
1
3
,且α為第二象限的角,求cosα,tanα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)為偶函數(shù),x∈R,f(1)=
1
2
,f(x+2)=f(x)+f(2),則f(5)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若變量x,y滿(mǎn)足約束條件
y≤x
x+y≤1
y≥-1
且z=2x+y的最大值和最小值分別為m和n,則m-n等于( 。
A、8B、7C、6D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某方程有一無(wú)理根在區(qū)間D(1,3)內(nèi),若用二分法求此根的近似值,則將D至少等分多少次后,所得近值可精確到0.1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an},{bn},{cn}滿(mǎn)足:bn=an-2an+1,cn=an+1+2an+2-2,n∈N*
(1)若數(shù)列{an}是等差數(shù)列,求證:數(shù)列{bn}是等差數(shù)列;
(2)若數(shù)列{bn},{cn}都是等差數(shù)列,求證:數(shù)列{an}從第二項(xiàng)起為等差數(shù)列;
(3)若數(shù)列{bn}是等差數(shù)列,試判斷當(dāng)b1+a3=0時(shí),數(shù)列{an}是否成等差數(shù)列?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若變量x,y滿(mǎn)足約束條件
y≤x
x+y≤4
y≥1
,則z=2x+y的最大值為( 。
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

證明:(
a+b
2
2
a2+b2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}滿(mǎn)足an+1=
an
2
+
1
an
,(n∈N*).
(Ⅰ)若a1
2
,證明:數(shù)列{an}單調(diào)遞減;
(Ⅱ)若a1=2,證明:
2
an
2
+
1
n

查看答案和解析>>

同步練習(xí)冊(cè)答案