15.設定義在(0,+∞)的單調函數(shù)f(x),對任意的x∈(0,+∞)都有f[f(x)-log2x]=6.方程f(x)-f'(x)=4在下列哪個區(qū)間內有解(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

分析 由題意可得f(x)-log2x為定值,設為t,代入可得t=4,進而可得函數(shù)的解析式,化方程有解為函數(shù)F(x)=f(x)-f′(x)-4=log2x-1xln2有零點,結合F(1)<0,F(xiàn)(2)>0,由零點存在性定理得答案.

解答 解:根據(jù)題意,對任意的x∈(0,+∞),都有f[f(x)-log2x]=6,
又由f(x)是定義在(0,+∞)上的單調函數(shù),
則f(x)-log2x為定值,
設t=f(x)-log2x,則f(x)=t+log2x
又由f(t)=6,可得t+log2t=6,
可解得t=4,故f(x)=4+log2x,f′(x)=$\frac{1}{xln2}$,
設x0是方程f(x)-f′(x)=4的一個解,
∴x0是函數(shù)F(x)=f(x)-f′(x)-4=log2x-$\frac{1}{xln2}$的零點,
∵F(1)=-$\frac{1}{in2}$<0,F(xiàn)(2)=1-$\frac{1}{2ln2}$=1-$\frac{1}{ln4}$>0,
∴函數(shù)F(x)的零點介于(1,2)之間,
故選:B.

點評 本題考查函數(shù)零點判定定理,考查了數(shù)學轉化思想方法,考查邏輯思維能力與推理運算能力,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

5.函數(shù)f(x)=$\frac{{\sqrt{3-x-2{x^2}}}}{2x+3}$的定義域是(-$\frac{3}{2}$,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.橢圓C:$\frac{x^2}{9}$+$\frac{y^2}{4}$=1和圓O:x2+y2=5,動點P在橢圓C上動點,當點P落在圓O內部時,點P橫坐標的取值范圍是$({-\frac{{3\sqrt{5}}}{5},\frac{{3\sqrt{5}}}{5}})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知集合A={x|2≤x≤6,x∈R},B={x|-1<x<5,x∈R},全集U=R.
(1)求A∩(∁UB);
(2)若集合C={x|x<a,x∈R},A∩C=∅,求實數(shù)a的取值范圍.
(3)若集合D={x|m+1<x<2m-1,x∈R},B∩D≠∅,求實數(shù)m 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設m,n是兩條不同的直線,α,β是兩個不同的平面,下列命題正確的是( 。
A..若m⊥n,m⊥α,n∥β,則α∥βB.若m∥α,n∥β,α∥β,則m∥n
C..若m⊥α,n∥β,α∥β,則m⊥nD..若m∥n,m∥α,n∥β,則α∥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.若不等式|2x-3|<4與不等式x2+px+q<0的解集相同.
(Ⅰ)求實數(shù)p,q值;
(Ⅱ)若實數(shù)a,b,c∈R+,滿足a+b+c=2p-4q,求證:$\sqrt{a}$+$\sqrt$+$\sqrt{c}$≤$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.一個三角形的直觀圖是腰長為4的等腰直角三角形,則它的原面積是16$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.函數(shù)y=$\frac{27}{2}$x2+$\frac{1}{x}$單調遞增區(qū)間是( 。
A.(0,+∞)B.(-∞,$\frac{1}{3}$)C.($\frac{1}{3}$,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.在直角坐標系中,A、B分別是x軸和y軸上的動點,若以線段AB為直徑的圓C與直線x+y-4=0相切,則圓C面積的最小值為(  )
A.B.C.πD.$\frac{1}{2}$π

查看答案和解析>>

同步練習冊答案