4、過拋物線y2=4x的焦點(diǎn)F作垂直于x軸的直線,交拋物線于A,B兩點(diǎn),則以F為圓心、AB為直徑的圓的方程是
(x-1)2+y2=4
分析:先根據(jù)拋物線的方程求得其焦點(diǎn)的坐標(biāo),把x=1代入拋物線方程求得A,B的縱坐標(biāo),進(jìn)而求得AB的長(zhǎng)即圓的直徑,進(jìn)而求得圓的方程.
解答:解:∵y2=4x,
∴p=2,F(xiàn)(1,0),
把x=1代入拋物線方程求得y=±2
∴A(1,2),B(1,-2),
∴|AB|=2+2=4
∴所求圓的方程為(x-1)2+y2=4.
故答案為:(x-1)2+y2=4.
點(diǎn)評(píng):本題主要考查了拋物線的簡(jiǎn)單性質(zhì),拋物線與圓的關(guān)系.考查了學(xué)生對(duì)拋物線和圓的標(biāo)準(zhǔn)方程知識(shí)點(diǎn)的熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

傾斜角為
π
4
的直線過拋物線y2=4x的焦點(diǎn)且與拋物線交于A,B兩點(diǎn),則|AB|=( 。
A、
13
B、8
2
C、16
D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點(diǎn)F引兩條互相垂直的直線AB、CD交拋物線于A、B、C、D四點(diǎn).
(1)求當(dāng)|AB|+|CD|取最小值時(shí)直線AB、CD的傾斜角的大小
(2)求四邊形ACBD的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點(diǎn)F的直線交該拋物線于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).若|AF|=3,則△AOB的面積為
3
2
2
3
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),點(diǎn)O是坐標(biāo)原點(diǎn),若|AF|=5,則△AOB的面積為( 。
A、5
B、
5
2
C、
3
2
D、
17
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),A、B兩點(diǎn)在準(zhǔn)線l上的射影分別為M.N,則∠MFN=(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案