【題目】“中國(guó)剩余定理”又稱“孫子定理”.1852年英國(guó)來(lái)華傳教士偉烈亞力將《孫子算經(jīng)》中“物不知數(shù)”問(wèn)題的解法傳至歐洲.1874年英國(guó)數(shù)學(xué)家馬西森指出此法符合1801年由高斯得到的關(guān)于同余式解法的一般性定理,因而西方稱之為“中國(guó)剩余定理”,“中國(guó)剩余定理”講的是一個(gè)關(guān)于整除的問(wèn)題,現(xiàn)有這樣一個(gè)整除問(wèn)題:將1到2030這2030個(gè)自然數(shù)中,能被3除余1且被4除余1的數(shù)按從小到大的順序排成一列,構(gòu)成數(shù)列,則此數(shù)列共有( )
A.168項(xiàng)B.169項(xiàng)C.170項(xiàng)D.171項(xiàng)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋子中放有大小和形狀相同的小球若干,其中標(biāo)號(hào)為0的小球1個(gè),標(biāo)號(hào)為1的小球1個(gè),標(biāo)號(hào)為2的小球n個(gè),已知從袋子中隨機(jī)抽取1個(gè)小球,取到標(biāo)號(hào)為2的小球的概率是.
(1)求n的值;
(2)從袋子中不放回地隨機(jī)抽取2個(gè)球,記第一次取出小球標(biāo)號(hào)為a,第二次取出的小球標(biāo)號(hào)為b.①記“a+b=2”為事件A,求事件A的概率;
②在區(qū)間[0,2]內(nèi)任取2個(gè)實(shí)數(shù)x,y,求事件“x2+y2>(a-b)2恒成立”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《情境》劉曉紅同學(xué)在做達(dá)標(biāo)訓(xùn)練的課外作業(yè)時(shí),遇到一個(gè)如何用五點(diǎn)法作出正弦型函數(shù)在長(zhǎng)度為一個(gè)周期的閉區(qū)間上的圖象及圖象之間如何進(jìn)行變換的問(wèn)題,她犯愁了.
《問(wèn)題》設(shè)函數(shù)的周期為,且圖象過(guò)點(diǎn).
(1)求與的值;
(2)用五點(diǎn)法作函數(shù)在長(zhǎng)度為一個(gè)周期的閉區(qū)間上的圖象;
(3)敘述函數(shù)的圖象可由函數(shù)的圖象經(jīng)過(guò)怎樣的變換而得到.
由于劉曉紅對(duì)上述問(wèn)題還沒(méi)有掌握解決方法及解題概念和步驟,導(dǎo)致無(wú)從下手,于是她請(qǐng)教了班上的學(xué)習(xí)委員張倩同學(xué)給她做了如下點(diǎn)撥:
用五點(diǎn)法作出在一個(gè)周期的閉區(qū)間上的圖象,首先要列表并分別令相位、、、、,再解出對(duì)應(yīng)的、的值,得出坐標(biāo),然后描點(diǎn),最后畫(huà)出圖象.而由函數(shù)的圖象變到函數(shù)的圖象主要有兩種途徑:①按物理量初相,周期,振幅的順序變換;②按物理量周期,初相,振幅的順序變換.要注意兩者操作的區(qū)別,防止出錯(cuò).
經(jīng)過(guò)張倩耐心而細(xì)致的解釋,劉曉紅豁然開(kāi)朗,并對(duì)該題解答如下:
(注意:解答第(3)問(wèn)時(shí),要按照題中要求,寫(xiě)出兩種變換過(guò)程)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線,則下列結(jié)論正確的是( )
A.直線的傾斜角是B.若直線則
C.點(diǎn)到直線的距離是D.過(guò)與直線平行的直線方程是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線與圓相切,圓心的坐標(biāo)為.
(1)求圓的方程;
(2)設(shè)直線與圓沒(méi)有公共點(diǎn),求的取值范圍;
(3)設(shè)直線與圓交于、兩點(diǎn),且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四色猜想是世界三大數(shù)學(xué)猜想之一,1976年數(shù)學(xué)家阿佩爾與哈肯證明,稱為四色定理.其內(nèi)容是:“任意一張平面地圖只用四種顏色就能使具有共同邊界的國(guó)家涂上不同的顏色.”用數(shù)學(xué)語(yǔ)言表示為“將平面任意地細(xì)分為不相重疊的區(qū)域,每一個(gè)區(qū)域總可以用,,,四個(gè)數(shù)字之一標(biāo)記,而不會(huì)使相鄰的兩個(gè)區(qū)域得到相同的數(shù)字.”如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗實(shí)線圍城的各區(qū)域上分別標(biāo)有數(shù)字,,,的四色地圖符合四色定理,區(qū)域和區(qū)域標(biāo)記的數(shù)字丟失.若在該四色地圖上隨機(jī)取一點(diǎn),則恰好取在標(biāo)記為的區(qū)域的概率所有可能值中,最大的是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖四棱錐中,底面,是邊長(zhǎng)為2的等邊三角形,且,,點(diǎn)是棱上的動(dòng)點(diǎn).
(I)求證:平面平面;
(Ⅱ)當(dāng)線段最小時(shí),求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[2019·清遠(yuǎn)期末]一只紅鈴蟲(chóng)的產(chǎn)卵數(shù)和溫度有關(guān),現(xiàn)收集了4組觀測(cè)數(shù)據(jù)列于下表中,根據(jù)數(shù)據(jù)作出散點(diǎn)圖如下:
溫度 | 20 | 25 | 30 | 35 |
產(chǎn)卵數(shù)/個(gè) | 5 | 20 | 100 | 325 |
(1)根據(jù)散點(diǎn)圖判斷與哪一個(gè)更適宜作為產(chǎn)卵數(shù)關(guān)于溫度的回歸方程類型?(給出判斷即可,不必說(shuō)明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程(數(shù)字保留2位小數(shù));
(3)要使得產(chǎn)卵數(shù)不超過(guò)50,則溫度控制在多少以下?(最后結(jié)果保留到整數(shù))
參考數(shù)據(jù):,,,,,,,,,,
5 | 20 | 100 | 325 | |
1.61 | 3 | 4.61 | 5.78 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com