(本小題滿分12分)
已知是定義在上的偶函數(shù),且當(dāng)時(shí),.
(1)求當(dāng)時(shí),的解析式;
(2)作出函數(shù)的圖象,并指出其單調(diào)區(qū)間(不必證明).

(1);
(2)的單調(diào)增區(qū)間為,,減區(qū)間為,.

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)
已知函數(shù)(其中常數(shù)
(1)判斷函數(shù)的單調(diào)性,并加以證明;
(2)如果是奇函數(shù),求實(shí)數(shù)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是定義在上的奇函數(shù),且,若時(shí),有成立.
(1)判斷上的單調(diào)性,并證明;
(2)解不等式:;
(3)若當(dāng)時(shí),對(duì)所有的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題12分)已知函數(shù)
(1)作出函數(shù)的圖像;
(2)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

本小題滿分8分
已知函數(shù),求函數(shù)的定義域,判斷函數(shù)的奇偶性,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)已知函數(shù)f(x)=, x∈[3, 5]
(1)判斷f(x)單調(diào)性并證明;(2)求f(x)最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)星期天,劉先生到電信局打算上網(wǎng)開(kāi)戶,經(jīng)詢問(wèn),記錄了可能需要的三種方式所花費(fèi)的費(fèi)用資料,現(xiàn)將資料整理如下:
1163普通:上網(wǎng)資費(fèi)2元/小時(shí);
2163A:每月50元(可上網(wǎng)50小時(shí)),超過(guò)50小時(shí)的部分資費(fèi)2元/小時(shí);
3ADSLD:每月70元,時(shí)長(zhǎng)不限(其他因素忽略不計(jì)).
請(qǐng)你用所學(xué)的函數(shù)知識(shí)對(duì)上網(wǎng)方式與費(fèi)用問(wèn)題作出研究:
(1)分別寫出三種上網(wǎng)方式中所用資費(fèi)與時(shí)間的函數(shù)解析式;
(2)在同一坐標(biāo)系內(nèi)分別畫出三種方式所需資費(fèi)與時(shí)間的函數(shù)圖象;
(3)根據(jù)你的研究,請(qǐng)給劉先生一個(gè)合理化的建議.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(10分)已知是定義在R上的減函數(shù),且,
求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

定義在R上的函數(shù)f(x)是最小正周期為2的奇函數(shù), 且當(dāng)x∈(0, 1)時(shí),
f(x)= .
(Ⅰ)求f(x)在[-1, 1]上的解析式;   (Ⅱ)證明f(x)在(0, 1)上時(shí)減函數(shù); 
(Ⅲ)當(dāng)λ取何值時(shí), 方程f(x)=λ在[-1, 1]上有解?

查看答案和解析>>

同步練習(xí)冊(cè)答案