【題目】設函數.
(1)討論函數的單調性;
(2)若函數恰有兩個零點,求的取值范圍.
【答案】(1)見解析;(2)
【解析】
(1),討論a,求得單調性即可(2)利用(1)的分類討論,研究函數最值,確定零點個數即可求解
(1)因為,其定義域為,
所以.
①當時,令,得;令,得,
此時在上單調遞減,在上單調遞增.
②當時,令,得或;令,得,
此時在,上單調遞減,在上單調遞增.
③當時,,此時在上單調遞減.
④當時,令,得或;令,得,
此時在,上單調遞減,在上單調遞增.
(2)由(1)可知:①當時,.
易證,所以.
因為,,
.
所以恰有兩個不同的零點,只需,解得.
②當時,,不符合題意.
③當時,在上單調遞減,不符合題意.
④當時,由于在,上單調遞減,在上單調遞增,且,又,由于,,
所以,函數最多只有1個零點,與題意不符.
綜上可知,,即的取值范圍為.
科目:高中數學 來源: 題型:
【題目】《中華人民共和國道路交通安全法》第47條的相關規(guī)定:機動車行經人行道時,應當減速慢行;遇行人正在通過人行道,應當停車讓行,俗稱“禮讓斑馬線”, 《中華人民共和國道路交通安全法》第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設備所抓拍的5個月內駕駛員“禮讓斑馬線”行為統計數據:
月份 | 1 | 2 | 3 | 4 | 5 |
違章駕駛員人數 | 120 | 105 | 100 | 90 | 85 |
(1)請利用所給數據求違章人數與月份之間的回歸直線方程;
(2)預測該路口9月份的不“禮讓斑馬線”違章駕駛員人數.
參考公式: , .
參考數據: .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點恰好是橢圓的右焦點.
(1)求實數的值及拋物線的準線方程;
(2)過點任作兩條互相垂直的直線分別交拋物線于、和、點,求兩條弦的弦長之和的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平頂山市公安局交警支隊依據《中華人民共和國道路交通安全法》第條規(guī)定:所有主干道路凡機動車途經十字口或斑馬線,無論轉彎或者直行,遇有行人過馬路,必須禮讓行人,違反者將被處以元罰款,記分的行政處罰.如表是本市一主干路段監(jiān)控設備所抓拍的個月內,機動車駕駛員不“禮讓斑馬線”行為統計數據:
月份 | |||||
違章駕駛員人數 |
(Ⅰ)請利用所給數據求違章人數與月份之間的回歸直線方程;
(Ⅱ)預測該路段月份的不“禮讓斑馬線”違章駕駛員人數.
參考公式:,.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某群體的人均通勤時間,是指單日內該群體中成員從居住地到工作地的平均用時.某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當中()的成員自駕時,自駕群體的人均通勤時間為(單位:分鐘),而公交群體的人均通勤時間不受影響,恒為分鐘,試根據上述分析結果回答下列問題:
(1)當在什么范圍內時,公交群體的人均通勤時間少于自駕群體的人均通勤時間?
(2)求該地上班族的人均通勤時間的表達式;討論的單調性,并說明其實際意義.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義:若數列滿足,存在實數,對任意,都有,則稱數列有上界,是數列的一個上界,已知定理:單調遞增有上界的數列收斂(即極限存在).
(1)數列是否存在上界?若存在,試求其所有上界中的最小值;若不存在,請說明理由;
(2)若非負數列滿足,(),求證:1是非負數列的一個上界,且數列的極限存在,并求其極限;
(3)若正項遞增數列無上界,證明:存在,當時,恒有.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于數列,把作為新數列的第一項,把或()作為新數列的第項,數列稱為數列的一個生成數列.例如,數列的一個生成數列是.已知數列為數列的生成數列,為數列的前項和.
(1)寫出的所有可能值;
(2)若生成數列滿足,求數列的通項公式;
(3)證明:對于給定的,的所有可能值組成的集合為.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若橢圓C1: 和橢圓C2: 的焦點相同且a1>a2.給出如下四個結論:
①橢圓C1和橢圓C2一定沒有公共點;
②;
③;
④a1-a2<b1-b2.
其中,所有正確結論的序號是( )
A. ②③④ B. ①③④
C. ①②④ D. ①②③
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com