精英家教網 > 高中數學 > 題目詳情

【題目】設函數.

(1)討論函數的單調性;

(2)若函數恰有兩個零點,求的取值范圍.

【答案】(1)見解析;(2)

【解析】

1,討論a,求得單調性即可(2)利用(1)的分類討論,研究函數最值,確定零點個數即可求解

1)因為,其定義域為,

所以.

①當時,令,得;令,得,

此時上單調遞減,在上單調遞增.

②當時,令,得;令,得

此時,上單調遞減,在上單調遞增.

③當時,,此時上單調遞減.

④當時,令,得;令,得,

此時,上單調遞減,在上單調遞增.

2)由(1)可知:①當時,.

易證,所以.

因為,,

.

所以恰有兩個不同的零點,只需,解得.

②當時,,不符合題意.

③當時,上單調遞減,不符合題意.

④當時,由于,上單調遞減,在上單調遞增,且,又,由于,,

所以,函數最多只有1個零點,與題意不符.

綜上可知,,即的取值范圍為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】《中華人民共和國道路交通安全法》第47條的相關規(guī)定:機動車行經人行道時,應當減速慢行;遇行人正在通過人行道,應當停車讓行,俗稱“禮讓斑馬線”, 《中華人民共和國道路交通安全法》第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設備所抓拍的5個月內駕駛員“禮讓斑馬線”行為統計數據:

月份

1

2

3

4

5

違章駕駛員人數

120

105

100

90

85

(1)請利用所給數據求違章人數與月份之間的回歸直線方程

(2)預測該路口9月份的不“禮讓斑馬線”違章駕駛員人數.

參考公式: , .

參考數據: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點恰好是橢圓的右焦點.

1)求實數的值及拋物線的準線方程;

2)過點任作兩條互相垂直的直線分別交拋物線、點,求兩條弦的弦長之和的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】平頂山市公安局交警支隊依據《中華人民共和國道路交通安全法》第條規(guī)定:所有主干道路凡機動車途經十字口或斑馬線,無論轉彎或者直行,遇有行人過馬路,必須禮讓行人,違反者將被處以元罰款,記分的行政處罰.如表是本市一主干路段監(jiān)控設備所抓拍的個月內,機動車駕駛員不“禮讓斑馬線”行為統計數據:

月份

違章駕駛員人數

(Ⅰ)請利用所給數據求違章人數與月份之間的回歸直線方程

(Ⅱ)預測該路段月份的不“禮讓斑馬線”違章駕駛員人數.

參考公式:,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某群體的人均通勤時間,是指單日內該群體中成員從居住地到工作地的平均用時.某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當)的成員自駕時,自駕群體的人均通勤時間為(單位:分鐘),而公交群體的人均通勤時間不受影響,恒為分鐘,試根據上述分析結果回答下列問題:

(1)當在什么范圍內時,公交群體的人均通勤時間少于自駕群體的人均通勤時間?

(2)求該地上班族的人均通勤時間的表達式;討論的單調性,并說明其實際意義.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義:若數列滿足,存在實數,對任意,都有,則稱數列有上界,是數列的一個上界,已知定理:單調遞增有上界的數列收斂(即極限存在).

(1)數列是否存在上界?若存在,試求其所有上界中的最小值;若不存在,請說明理由;

(2)若非負數列滿足),求證:1是非負數列的一個上界,且數列的極限存在,并求其極限;

(3)若正項遞增數列無上界,證明:存在,當時,恒有.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如果,已知正方形的邊長為2,平行軸,頂點分別在函數,的圖像上,則實數的值為________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于數列,把作為新數列的第一項,把)作為新數列的第項,數列稱為數列的一個生成數列.例如,數列的一個生成數列是.已知數列為數列的生成數列,為數列的前項和.

1)寫出的所有可能值;

2)若生成數列滿足,求數列的通項公式;

3)證明:對于給定的的所有可能值組成的集合為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若橢圓C1 和橢圓C2 的焦點相同且a1>a2.給出如下四個結論:

①橢圓C1和橢圓C2一定沒有公共點;

;

;

a1a2<b1b2.

其中,所有正確結論的序號是(  )

A. ②③④ B. ①③④

C. ①②④ D. ①②③

查看答案和解析>>

同步練習冊答案