13.拋物線y2=4x上有兩點(diǎn)A,B到焦點(diǎn)的距離之和為7,則A,B到y(tǒng)軸的距離之和為( 。
A.8B.7C.6D.5

分析 根據(jù)拋物線的方程求出準(zhǔn)線方程,利用拋物線的定義拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,列出方程求出A、B到y(tǒng)軸的距離之和.

解答 解:拋物線y2=4x的焦點(diǎn)F(1,0),準(zhǔn)線方程x=-1
設(shè)A(x1,y1),B(x2,y2
∴|AF|+|BF|=x1+1+x2+1=7
∴x1+x2=5,
∴A、B到y(tǒng)軸的距離之和為5,
故選:D.

點(diǎn)評(píng) 本題考查解決拋物線上的點(diǎn)到焦點(diǎn)的距離問題,解題的關(guān)鍵是利用拋物線的定義將到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知某個(gè)幾何體的三視圖如圖所示,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個(gè)幾何體的體積是( 。
A.$\frac{4}{3}$cm3B.$\frac{8}{3}$cm3C.2cm3D.4cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知圓C1:x2+y2=4和圓2:(x-a)2+y2=4,其中a是在區(qū)間(0,6)上任意取得一個(gè)實(shí)數(shù),那么圓C1和圓C2相交且公共弦長小于2$\sqrt{3}$的概率為(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,已知2sin2A+sin2B=sin2C.
(1)若b=2a=4,求△ABC的面積;
(2)求$\frac{{c}^{2}}{ab}$的最小值,并確定此時(shí)$\frac{c}{a}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右頂點(diǎn)分別為A,B,離心率為$\frac{\sqrt{2}}{2}$,直線x=-a與y=b交于點(diǎn)D,且|BD|=3$\sqrt{2}$,過點(diǎn)B作直線l交直線x=-a于點(diǎn)M,交橢圓于另一點(diǎn)P.
(1)求直線MB與直線PA的斜率之積;
(2)證明:$\overrightarrow{OM}$•$\overrightarrow{OP}$為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)f(x)=$\frac{|x|}{\sqrt{1+{x}^{2}}\sqrt{4+{x}^{2}}}$的最大值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=$\frac{|x|}{\sqrt{1+{x}^{2}}\sqrt{4+{x}^{2}}}$的最大值為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{y≥\frac{1}{2}x}\\{x≤7}\\{2x-y≥4}\end{array}\right.$,若z=ax+y有最大值7,則實(shí)數(shù)a的值為-$\frac{3}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如果直線ax+2y-3=0與2x-y=0垂直,那么a等于1.

查看答案和解析>>

同步練習(xí)冊(cè)答案