精英家教網 > 高中數學 > 題目詳情
12.二項式(x-$\frac{1}{2x}$)9展開式中,x3項的系數為(  )
A.-$\frac{5}{2}$B.$\frac{5}{2}$C.-$\frac{21}{2}$D.$\frac{21}{2}$

分析 利用通項公式即可得出.

解答 解:二項式(x-$\frac{1}{2x}$)9展開式中,通項公式Tr+1=${∁}_{9}^{r}$${x}^{9-r}(-\frac{1}{2x})^{r}$=$(-\frac{1}{2})^{r}$${∁}_{9}^{r}$x9-2r,
令9-2r=3,解得r=3,
x3項的系數=$(-\frac{1}{2})^{3}$${∁}_{9}^{3}$=-$\frac{21}{2}$.
故選:C.

點評 本題考查了二項式定理的應用,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

2.設集合M={x|x≥2},N={x|x2-25<0},則M∩N=( 。
A.(1,5)B.[2,5)C.(-5,2]D.[2,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.已成橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右頂點分別為A1、A2,上下頂點分別為B2/B1,左右焦點分別為F1、F2,其中長軸長為4,且圓O:x2+y2=$\frac{12}{7}$為菱形A1B1A2B2的內切圓.
(1)求橢圓C的方程;
(2)點N(n,0)為x軸正半軸上一點,過點N作橢圓C的切線l,記右焦點F2在l上的射影為H,若△F1HN的面積不小于$\frac{3}{16}$n2,求n的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.已知函數f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}x,x>0}\\{{3}^{x},x≤0}\end{array}\right.$,則f(f(2))的值為( 。
A.-$\frac{1}{3}$B.-3C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

7.兩個單位向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$⊥$\overrightarrow$,且$\overrightarrow{a}$⊥(x$\overrightarrow{a}$+$\overrightarrow$),則|2$\overrightarrow{a}$-(x+1)$\overrightarrow$|=$\sqrt{5}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.設向量$\overrightarrow{OA}$=(1,-2),$\overrightarrow{OB}$=(a,-1),$\overrightarrow{OC}$=(-b,0),其中 O 為坐標原點,b>0,若 A,B,C 三點共線,則$\frac{1}{a}$+$\frac{2}$的最小值為( 。
A.4B.6C.8D.9

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.設橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>0,b>0})$的一個頂點拋物線${x^2}=4\sqrt{3}y$的焦點重合,F(xiàn)1與F2分別是該橢圓的左右焦點,離心率$e=\frac{1}{2}$,且過橢圓右焦點F2的直線l與橢圓C交于M.N兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若$\overrightarrow{OM}•\overrightarrow{ON}=-2$,其中O為坐標原點,求直線l的方程;
(Ⅲ)若AB橢圓C經過原點O的弦,且MN∥AB,判斷$\frac{{{{|{AB}|}^2}}}{{|{MN}|}}$是否為定值?若是定值,請求出,若不是定值,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,AB=2AD=2,$∠DAB=\frac{π}{3}$,PD⊥AD,PD⊥DC.
(Ⅰ)證明:平面PBC⊥平面PBD;
(Ⅱ)若二面角P-BC-D為$\frac{π}{6}$,求AP與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.設函數f(x)=|2x+3|-|2x-a|,a∈R.
(1)若不等式f(x)≤-5的解集非空,求實數a的取值范圍;
(2)若函數y=f(x)的圖象關于點(-$\frac{1}{2}$,0)對稱,求實數a的值.

查看答案和解析>>

同步練習冊答案