【題目】平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),圓C的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點O為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求直線l和圓C的極坐標(biāo)方程;
(Ⅱ)設(shè)直線l和圓C相交于A,B兩點,求弦AB與其所對劣弧所圍成的圖形面積.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (θ為參數(shù)),曲線C2的普通方程為,以原點為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求曲線C1的普通方程和C2的極坐標(biāo)方程;
(2)若A,B是曲線C2上的兩點,且OA⊥OB,求+的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=2,3acosB﹣bcosC=ccosB,點D在線段BC上.
(1)若∠ADC= ,求AD的長;
(2)若BD=2DC,△ACD的面積為 ,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用6種顏色給右圖四面體A﹣BCD的每條棱染色,要求每條棱只染一種顏色且共頂點的棱染不同的顏色,則不同的染色方法共有( )種.
A.4080
B.3360
C.1920
D.720
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sin(ωx+φ)+2sin2 ﹣1(ω>0,0<φ<π)為奇函數(shù),且相鄰兩對稱軸間的距離為 .
(1)當(dāng)x∈(﹣ , )時,求f(x)的單調(diào)遞減區(qū)間;
(2)將函數(shù)y=f(x)的圖象沿x軸方向向右平移 個單位長度,再把橫坐標(biāo)縮短到原來的 (縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象.當(dāng)x∈[﹣ , ]時,求函數(shù)g(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax2﹣a﹣lnx,其中a∈R.
(1)討論f(x)的單調(diào)性;
(2)當(dāng)x∈(1,+∞)時,xf(x)+xe1﹣x>1恒成立,求a的取值范圍.(其中,e=2.718…為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l與拋物線交于點A,B兩點,與x軸交于點M,直線OA,OB的斜率之積為.
(1)證明:直線AB過定點;
(2)以AB為直徑的圓P交x軸于E,F(xiàn)兩點,O為坐標(biāo)原點,求|OE||OF|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)若的解集為,求的值;
(2)求函數(shù)在上的最小值;
(3)對于,使成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com