對(duì)于函數(shù)若存在,使得成立,則稱的不動(dòng)點(diǎn).
已知
(1)當(dāng)時(shí),求函數(shù)的不動(dòng)點(diǎn);
(2)若對(duì)任意實(shí)數(shù),函數(shù)恒有兩個(gè)相異的不動(dòng)點(diǎn),求的取值范圍;
(3)在(2)的條件下,若圖象上、兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動(dòng)點(diǎn),且、兩點(diǎn)關(guān)于直線對(duì)稱,求的最小值.

(1)-1和3;(2);(3)

解析試題分析:(1)根據(jù)不動(dòng)點(diǎn)的定義,本題實(shí)質(zhì)是求方程的解;(2)函數(shù)恒有兩個(gè)相異的不動(dòng)點(diǎn)即方程恒有兩個(gè)不等實(shí)根,對(duì)應(yīng)的判別式恒成立;(3)兩點(diǎn)關(guān)于直線對(duì)稱,可用的結(jié)論有:①直線AB與直線垂直,即斜率互為負(fù)倒數(shù);②線段AB的中點(diǎn)在直線上.注意不動(dòng)點(diǎn)A、B所在直線AB的斜率為1.
試題解析: (1)時(shí),,
 
函數(shù)的不動(dòng)點(diǎn)為-1和3;
(2)即有兩個(gè)不等實(shí)根,轉(zhuǎn)化為有兩個(gè)不等實(shí)根,需有判別式大于0恒成立
,
的取值范圍為;
(3)設(shè),則,
的中點(diǎn)的坐標(biāo)為,即
兩點(diǎn)關(guān)于直線對(duì)稱,
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/63/0/uuyf9.png" style="vertical-align:middle;" />在直線上, ,
的中點(diǎn)在直線上,

利用基本不等式可得當(dāng)且僅當(dāng)時(shí),b的最小值為.
考點(diǎn):(1)解方程;(2)二次方程有兩個(gè)不等實(shí)根的條件;(3)直線的對(duì)稱點(diǎn)問題及最小值問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)令,求關(guān)于的函數(shù)關(guān)系式及的取值范圍;
(Ⅱ)求函數(shù)的值域,并求函數(shù)取得最小值時(shí)的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng),且時(shí),求證: 
(2)是否存在實(shí)數(shù),使得函數(shù)的定義域、值域都是?若存在,則求出的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8e/d/xpk2x1.png" style="vertical-align:middle;" />,且同時(shí)滿足以下三個(gè)條件:①;②對(duì)任意的,都有;③當(dāng)時(shí)總有.
(1)試求的值;
(2)求的最大值;
(3)證明:當(dāng)時(shí),恒有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),如果函數(shù)恰有兩個(gè)不同的極值點(diǎn),,且.
(Ⅰ)證明:;
(Ⅱ)求的最小值,并指出此時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

新晨投資公司擬投資開發(fā)某項(xiàng)新產(chǎn)品,市場(chǎng)評(píng)估能獲得萬元的投資收益.現(xiàn)公司準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金(單位:萬元)隨投資收益(單位:萬元)的增加而增加,且獎(jiǎng)金不低于萬元,同時(shí)不超過投資收益的.
(1)設(shè)獎(jiǎng)勵(lì)方案的函數(shù)模型為,試用數(shù)學(xué)語言表述公司對(duì)獎(jiǎng)勵(lì)方案的函數(shù)模型的基本要求.
(2)下面是公司預(yù)設(shè)的兩個(gè)獎(jiǎng)勵(lì)方案的函數(shù)模型:
;    ②
試分別分析這兩個(gè)函數(shù)模型是否符合公司要求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)若的值域;
(Ⅱ)若存在實(shí)數(shù),當(dāng)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)為實(shí)數(shù),函數(shù)
(1)若,求的取值范圍;
(2)求的最小值;
(3)設(shè)函數(shù),直接寫出(不需給出演算步驟)不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x2+4ax+2a+6.
(1)若函數(shù)f(x)的值域?yàn)閇0,+∞),求a的值;
(2)若函數(shù)f(x)的函數(shù)值均為非負(fù)數(shù),求g(a)=2-a|a+3|的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案