點(diǎn)M是橢圓
x2
4
+
y2
3
=1上的一點(diǎn),F(xiàn)1,F(xiàn)2分別為橢圓左右焦點(diǎn),則滿足|MF1|=3|MF2|的點(diǎn)M坐標(biāo)為
(±2,0)
(±2,0)
分析:根據(jù)橢圓的定義結(jié)合|MF1|=3|MF2|算出|MF1|=3且|MF2|=1.再由向量的數(shù)量積運(yùn)算,得到cos∠F1MF2=1,從而得到∠F1MF2=0,由此可得M為長軸的端點(diǎn),得到本題答案.
解答:解:∵根據(jù)橢圓的定義,得|MF1|+|MF2|=2a=4
∴結(jié)合|MF1|=3|MF2|,可得|MF1|=3且|MF2|=1
F1F2
=
MF2
-
MF1

∴平方得|
F1F2
|2=|
MF2
|2+|
MF1
|2-2|
MF2
|•|
MF1
|cos∠F1MF2,
即4=9+1-2×3×1×cos∠F1MF2,可得cos∠F1MF2=1
∴∠F1MF2=0,可得M在長軸的端點(diǎn),可得M(±2,0)
故答案為:(±2,0)
點(diǎn)評:本題給出橢圓的方程,求橢圓上滿足|MF1|=3|MF2|的點(diǎn)M坐標(biāo).著重考查了橢圓的定義與標(biāo)準(zhǔn)方程,向量數(shù)量積的運(yùn)算性質(zhì)等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

以下五個(gè)關(guān)于圓錐曲線的命題中:
①平面內(nèi)到定點(diǎn)A(1,0)和定直線l:x=2的距離之比為
1
2
的點(diǎn)的軌跡方程是
x2
4
+
y2
3
=1
;
②點(diǎn)P是拋物線y2=2x上的動點(diǎn),點(diǎn)P在y軸上的射影是M點(diǎn)A的坐標(biāo)是A(3,6),則|PA|+|PM|的最小值是6;
③平面內(nèi)到兩定點(diǎn)距離之比等于常數(shù)λ(λ>0)的點(diǎn)的軌跡是圓;
④若動點(diǎn)M(x,y)滿足
(x-1)2+(y+2)2
=|2x-y-4|
,則動點(diǎn)M的軌跡是雙曲線;
⑤若過點(diǎn)C(1,1)的直線l交橢圓
x2
4
+
y2
3
=1
于不同的兩點(diǎn)A,B,且C是AB的中點(diǎn),則直線l的方程是3x+4y-7=0.
其中真命題的序號是
 
.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P(x,y)是橢圓
x24
+y2=1
上的點(diǎn),求M=x+2y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1的方程是
x2
4
+y2=1
,雙曲線C2的左、右焦點(diǎn)分別為C1的左、右頂點(diǎn),C2的左、右頂點(diǎn)分別為C1的左、右焦點(diǎn).
(1)求雙曲線C2的方程;
(2)若直線l:y=kx+
2
與雙曲線C2恒有兩個(gè)不同的交點(diǎn)A,B,且
OA
OB
>2
(O為原點(diǎn)),求k的取值范圍;
(3)設(shè)P1,P2分別是C2的兩條漸近線上的點(diǎn),點(diǎn)M在C2上,且
OM
=
1
2
(
OP1
+
OP2
)
,求△P1OP2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m、n、s、t為正數(shù),m+n=2,
m
s
+
n
t
=9其中m、n是常數(shù),且s+t最小值是
4
9
,滿足條件的點(diǎn)(m,n)是橢圓
x2
4
+
y2
2
=1一弦的中點(diǎn),則此弦所在的直線方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知P(x,y)是橢圓
x2
4
+y2=1
上的點(diǎn),求M=x+2y的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案