如圖,P是拋物線(xiàn)C:y=x2上一點(diǎn),直線(xiàn)過(guò)點(diǎn)P并與拋物線(xiàn)C在點(diǎn)P的切線(xiàn)垂直,與拋物線(xiàn)C相交于另一點(diǎn)Q.
(Ⅰ)當(dāng)點(diǎn)P的橫坐標(biāo)為2時(shí),求直線(xiàn)的方程;
(Ⅱ)當(dāng)點(diǎn)P在拋物線(xiàn)C上移動(dòng)時(shí),求線(xiàn)段PQ中點(diǎn)M的軌跡方程,并求點(diǎn)M到x軸的最短距離.
解:(Ⅰ)把x=2代入,得y=2,
∴點(diǎn)P坐標(biāo)為(2,2).
由 , ① 得,
∴過(guò)點(diǎn)P的切線(xiàn)的斜率,
直線(xiàn)的斜率
∴直線(xiàn)的方程為,
即.
(Ⅱ)設(shè)
∵ 過(guò)點(diǎn)P的切線(xiàn)斜率,當(dāng)時(shí)不合題意,
∴ 直線(xiàn)的斜率,
直線(xiàn)的方程為 ②
方法一:聯(lián)立①②消去y,得x2+x-x02-2=0. 設(shè)Q
∵M(jìn)是PQ的中點(diǎn),
∴
消去x0,得y=x2+(x≠0)就是所求的軌跡方程.
由x≠0知
上式等號(hào)僅當(dāng)時(shí)成立,所以點(diǎn)M到x軸的最短距離是
方法二:
設(shè)Q則
由,,
∴,
∴ ∴
將上式代入②并整理,得 (x≠0)就是所求的軌跡方程.
由x≠0知
上式等號(hào)僅當(dāng)時(shí)成立,所以點(diǎn)M到x軸的最短距離是
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
2 |
|ST| |
|SP| |
|ST| |
|SQ| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
|ST| |
|SP| |
|ST| |
|SQ| |
1 |
y1 |
1 |
y2 |
|ST| |
|SP| |
|ST| |
|SQ| |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com