(本小題滿分13分)
已知直線,圓.
(Ⅰ)證明:對任意,直線恒過一定點(diǎn)N,且直線與圓C恒有兩個公共點(diǎn);
(Ⅱ)設(shè)以CN為直徑的圓為圓D(D為CN中點(diǎn)),求證圓D的方程為:
(Ⅲ)設(shè)直線與圓的交于A、B兩點(diǎn),與圓D:交于點(diǎn)(異于C、N),當(dāng)變化時,求證為AB的中點(diǎn).
(Ⅰ)∵N在圓C內(nèi),∴直線與圓C恒有兩個公共點(diǎn).
(Ⅱ)軌跡的方程為.
【解析】
試題分析:(1)利用圓心到直線的距離小于半徑,判定,直線l與圓C總有兩個不同交點(diǎn)A、B;
(2)求解CN的中點(diǎn)坐標(biāo)和CN的長度的一半得到圓心和半徑進(jìn)而求解圓的方程。
(3)利用圓的方程以及交點(diǎn)問題得到求證。
(Ⅰ)方法1:聯(lián)立方程組
消去,得
∴直線與圓恒有兩個公共點(diǎn)………………………………………………6分
方法2:將圓化成標(biāo)準(zhǔn)方程為
由可得:.
解得,所以直線過定點(diǎn)N(1,-1)
∵N在圓C內(nèi),∴直線與圓C恒有兩個公共點(diǎn).…………………………6分
(Ⅱ)設(shè)CN的中點(diǎn)為D,由于°,
∴
∴M點(diǎn)的軌跡為以CN為直徑的圓.
CN中點(diǎn)D的坐標(biāo)為(,0),.
∴軌跡的方程為.……………………13分
考點(diǎn):本題主要考查了直線與圓的位置關(guān)系的運(yùn)用。
點(diǎn)評:解決該試題的關(guān)鍵是對于圓的方程的求解的常用方法的運(yùn)用,以及通過圓心到直線的距離判定線圓的位置關(guān)系的運(yùn)用。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.
(3)設(shè)0<x<,且方程有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知定義域為的函數(shù)是奇函數(shù).
(1)求的值;(2)判斷函數(shù)的單調(diào)性;
(3)若對任意的,不等式恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知集合, ,.
(1)求(∁; (2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,為的中點(diǎn)。
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線與所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)
已知為銳角,且,函數(shù),數(shù)列{}的首項.
(1) 求函數(shù)的表達(dá)式;
(2)在中,若A=2,,BC=2,求的面積
(3) 求數(shù)列的前項和
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com