【題目】(本小題滿分12分)

已知數(shù)列的前項(xiàng)和,且

)求數(shù)列的通項(xiàng)公式;

)令,是否存在,使得、成等比數(shù)列.若存在,求出所有符合條件的值;若不存在,請(qǐng)說明理由.

【答案】;()不存在.

【解析】

試題分析:(1)給出的關(guān)系,求,常用思路:一是利用轉(zhuǎn)化為的遞推關(guān)系,再求其通項(xiàng)公式;二是轉(zhuǎn)化為的遞推關(guān)系,先求出的關(guān)系,再求;由時(shí),別漏掉這種情況,大部分學(xué)生好遺忘;(2)與數(shù)列有關(guān)的探索問題:第一步:假設(shè)符合條件的結(jié)論存在;第二步:從假設(shè)出發(fā),利用題中關(guān)系求解;第三步,確定符合要求的結(jié)論存在或不存在;第四步:給出明確結(jié)果;第五步:反思回顧,查看關(guān)鍵點(diǎn).

試題解析:解法1:當(dāng)時(shí),, 1分

3分

所以數(shù)列是首項(xiàng)為的常數(shù)列. 4分

所以

所以數(shù)列的通項(xiàng)公式為 6分

解法2:當(dāng)時(shí),, 1分

3分

4分

因?yàn)?/span>,符合的表達(dá)式. 5分

所以數(shù)列的通項(xiàng)公式為 6分

)假設(shè)存在,使得,,,成等比數(shù)列,

7分

因?yàn)?/span>

所以 10分

. 11分

這與矛盾.

故不存在,使得成等比數(shù)列. 12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)求經(jīng)過點(diǎn)的拋物線的標(biāo)準(zhǔn)方程;

(2)求以橢圓長(zhǎng)軸兩個(gè)端點(diǎn)為焦點(diǎn),以該橢圓焦點(diǎn)為頂點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某汽配廠生產(chǎn)某種零件,每個(gè)零件的出廠單價(jià)為60元,為了鼓勵(lì)更多銷售商訂購(gòu),該廠決定當(dāng)一次訂購(gòu)超過100個(gè)時(shí),每多訂購(gòu)一個(gè),訂購(gòu)的全部零件的出廠單價(jià)就降低元,但實(shí)際出廠單價(jià)不低于51元.

當(dāng)一次訂購(gòu)量最少為多少時(shí),零件的實(shí)際出廠單價(jià)恰好為51元?

設(shè)一次訂購(gòu)量為x個(gè),零件的實(shí)際出廠單價(jià)為p元,寫出函數(shù)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù),若存在區(qū)間,使得,則稱函數(shù)可等域函數(shù)”.區(qū)間為函數(shù)的一個(gè)可等域區(qū)間”.給出下列三個(gè)函數(shù):

;②;③;

則其中存在唯一可等域區(qū)間可等域函數(shù)的個(gè)數(shù)是(  

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

1)若關(guān)于的不等式上恒成立,求的取值范圍;

2)設(shè)函數(shù),上存在極值,求的取值范圍,并判斷極值的正負(fù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)圓的圓心為A,直線過點(diǎn)B(1,0)且與x軸不重合,設(shè)P為圓A上一點(diǎn),線段PB的垂直平分線交直線PA于E

(1)證明為定值,并寫出E的軌跡方程;

(2)設(shè)點(diǎn)M的軌跡為曲線C1,直線C1M,N兩點(diǎn),問:在軸上是否存在定點(diǎn)D使直線DM與DN的傾斜角互補(bǔ),若存在求出D點(diǎn)的坐標(biāo),否則說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校100名學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖.

(1)求圖中的值;

(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生期中考試數(shù)學(xué)成績(jī)的平均分;

(3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機(jī)抽取6名學(xué)生,將該樣本看成一個(gè)總體,從中隨機(jī)抽取2名,求其中恰有1人的分?jǐn)?shù)不低于90分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中, 為邊長(zhǎng)為2的等邊三角形,平面平面,四邊形為菱形, , 相交于點(diǎn).

1)求證: ;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為等差數(shù)列,且,其前8項(xiàng)和為52 是各項(xiàng)均為正數(shù)的等比數(shù)列,且滿足, .

1)求數(shù)列的通項(xiàng)公式;

(2)令,數(shù)列的前項(xiàng)和為若對(duì)任意正整數(shù),都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案