12.已知拋物線y2=2x和圓x2+y2-x=0,傾斜角為$\frac{π}{4}$的直線l經(jīng)過拋物線的焦點,若直線l與拋物線和圓的交點自上而下依次為A,B,C,D,則|AB|+|CD|=3.

分析 由圖形可以看出|AB|+|CD|等于弦長AD減去圓的直徑,圓的直徑易得,弦長AD可由拋物線的性質轉化為求兩端點A,D到拋物線準線的距離的和,由此求出兩點橫坐標的和,再求弦長AD.

解答 解:由圓x2+y2-x=0,即(x-$\frac{1}{2}$)2+y2=$\frac{1}{4}$可知,圓心為F($\frac{1}{2}$,0),
半徑為$\frac{1}{2}$,拋物線y2=2x,得到拋物線焦點為F($\frac{1}{2}$,0),如圖:
|AB|+|CD|=|AD|-|BC|
∵|BC|為已知圓的直徑,∴|BC|=1,則|AB|+|CD|=|AD|-1.
設A(x1,y1)、D(x2,y2),
∵|AD|=|AF|+|FD|,而A、D在拋物線上,
由已知可知,直線l方程為y=x-$\frac{1}{2}$,
由$\left\{\begin{array}{l}{y=x-\frac{1}{2}}\\{{y}^{2}=2x}\end{array}\right.$消去y,得4x2-12x+1=0,
∴x1+x2=3.∴|AD|=3+1=4,
因此,|AB|+|CD|=4-1=3.
故答案為:3.

點評 本題考查直線與圓錐曲線的關系,解題的關鍵是熟練掌握拋物線的定義與性質,通過這些將求弦長的問題轉化為求點到線的距離問題,此轉化有一個標志即直線是過焦點的.本題運算量大,極易因為運算出錯.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.已知矩形ADEF和菱形ABCD所在平面互相垂直,如圖,其中AF=1,AD=2,∠ADC=$\frac{π}{3}$,點N時線段AD的中點.
(Ⅰ)試問在線段BE上是否存在點M,使得直線AF∥平面MNC?若存在,請證明AF∥平面MNC,并求出$\frac{BM}{ME}$的值,若不存在,請說明理由;
(Ⅱ)求二面角N-CE-D的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.函數(shù)y=xsinx(x∈[-π,π])的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知在等比數(shù)列{an}中,an+1>an對n∈N*恒成立,且a1a4=8,a2+a3=6.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足,$\frac{a_1}{b_1}+\frac{{3{a_2}}}{b_2}+…+\frac{{({2n-1}){a_n}}}{b_n}=n,({n∈{N^*}})$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設全集U=R,集合A={y|y=3-x2},B={x|y=log2(x+2)},則(∁UA)∩B=( 。
A.{x|-2<x≤3}B.{x|x>3}C.{x|x≥3}D.{x|x<-2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.與圓x2+y2+2x-4y=0相切于原點的直線方程是( 。
A.x-2y=0B.x+2y=0C.2x-y=0D.2x+y=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知等差數(shù)列{an}滿足a1=2,a2+a4=8.
(Ⅰ)若a1,a3,am成等比數(shù)列,求m的值;
(Ⅱ)設bn=an+2an,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.求圓x2+y2=9上一點P與定點(1,0)之間距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)f(x)對任意的x∈R,都有f(-x)+f(x)=-6,且當x≥0時,f(x)=2x-4,則使得f(3x-x2)<0成立的x的取值范圍是(  )
A.(0,3)B.(-∞,0)∪(3,+∞)C.(1,2)D.(-∞,1)∪(2,+∞)

查看答案和解析>>

同步練習冊答案