分析 由圖形可以看出|AB|+|CD|等于弦長AD減去圓的直徑,圓的直徑易得,弦長AD可由拋物線的性質轉化為求兩端點A,D到拋物線準線的距離的和,由此求出兩點橫坐標的和,再求弦長AD.
解答 解:由圓x2+y2-x=0,即(x-$\frac{1}{2}$)2+y2=$\frac{1}{4}$可知,圓心為F($\frac{1}{2}$,0),
半徑為$\frac{1}{2}$,拋物線y2=2x,得到拋物線焦點為F($\frac{1}{2}$,0),如圖:
|AB|+|CD|=|AD|-|BC|
∵|BC|為已知圓的直徑,∴|BC|=1,則|AB|+|CD|=|AD|-1.
設A(x1,y1)、D(x2,y2),
∵|AD|=|AF|+|FD|,而A、D在拋物線上,
由已知可知,直線l方程為y=x-$\frac{1}{2}$,
由$\left\{\begin{array}{l}{y=x-\frac{1}{2}}\\{{y}^{2}=2x}\end{array}\right.$消去y,得4x2-12x+1=0,
∴x1+x2=3.∴|AD|=3+1=4,
因此,|AB|+|CD|=4-1=3.
故答案為:3.
點評 本題考查直線與圓錐曲線的關系,解題的關鍵是熟練掌握拋物線的定義與性質,通過這些將求弦長的問題轉化為求點到線的距離問題,此轉化有一個標志即直線是過焦點的.本題運算量大,極易因為運算出錯.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|-2<x≤3} | B. | {x|x>3} | C. | {x|x≥3} | D. | {x|x<-2} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,3) | B. | (-∞,0)∪(3,+∞) | C. | (1,2) | D. | (-∞,1)∪(2,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com