已知雙曲線與橢圓在x軸上有公共焦點(diǎn),若橢圓焦距為,它們的離心率是方程21x2+13=0的兩根,求雙曲線和橢圓的標(biāo)準(zhǔn)方程.

答案:
解析:

  解:由,……2分

  設(shè)雙曲線方程為,橢圓方程為,它們的焦點(diǎn),………4分

  則由,得,………6分

  又,………10分

  雙曲線方程為,橢圓方程為…………12分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)焦點(diǎn)在x軸上的橢圓,短軸上的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)為同一個(gè)正三角形的頂點(diǎn),焦點(diǎn)與橢圓上點(diǎn)的最近距離為
3
,求橢圓標(biāo)準(zhǔn)方程.
(2)已知雙曲線與橢圓
x2
49
+
y2
24
=1公共焦點(diǎn),且以y=±
4
3
x為漸近線,求雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的中心在原點(diǎn)O,其中一條準(zhǔn)線方程為x=
3
2
,且與橢圓
x2
25
+
y2
13
=1
有共同的焦點(diǎn).
(1)求此雙曲線的標(biāo)準(zhǔn)方程;
(2)(普通中學(xué)學(xué)生做)設(shè)直線L:y=kx+3與雙曲線交于A、B兩點(diǎn),試問(wèn):是否存在實(shí)數(shù)k,使得以弦AB為直徑的圓過(guò)點(diǎn)O?若存在,求出k的值,若不存在,請(qǐng)說(shuō)明理由.
(重點(diǎn)中學(xué)學(xué)生做)設(shè)直線L:y=kx+3與雙曲線交于A、B兩點(diǎn),C是直線L1:y=mx+6上任一點(diǎn)(A、B、C三點(diǎn)不共線)試問(wèn):是否存在實(shí)數(shù)k,使得△ABC是以AB為底邊的等腰三角形?若存在,求出k的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)焦點(diǎn)在x軸上的橢圓,短軸上的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)為同一個(gè)正三角形的頂點(diǎn),焦點(diǎn)與橢圓上點(diǎn)的最近距離為
3
,求橢圓標(biāo)準(zhǔn)方程.
(2)已知雙曲線與橢圓
x2
49
+
y2
24
=1公共焦點(diǎn),且以y=±
4
3
x為漸近線,求雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省濟(jì)南外國(guó)語(yǔ)學(xué)校高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

(1)焦點(diǎn)在x軸上的橢圓,短軸上的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)為同一個(gè)正三角形的頂點(diǎn),焦點(diǎn)與橢圓上點(diǎn)的最近距離為,求橢圓標(biāo)準(zhǔn)方程.
(2)已知雙曲線與橢圓+=1公共焦點(diǎn),且以y=±x為漸近線,求雙曲線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案