【題目】已知曲線上的點到點的距離比到直線的距離小,為坐標原點.
(1)過點且傾斜角為的直線與曲線交于、兩點,求的面積;
(2)設(shè)為曲線上任意一點,點,是否存在垂直于軸的直線,使得被以為直徑的圓截得的弦長恒為定值?若存在,求出的方程和定值;若不存在,說明理由.
【答案】(1);(2)直線存在,其方程為,定值為.
【解析】
(1)利用拋物線的定義可求得曲線的方程,由題意可得直線的方程為,設(shè)點、,將直線的方程與拋物線的方程聯(lián)立,列出韋達定理,利用三角形的面積公式可求得的面積;
(2)假設(shè)滿足條件的直線存在,其方程為,并設(shè)點,求出以為直徑的圓的方程,將代入圓的方程,求出弦長的表達式,進而可求得的值,由此可求得直線的方程.
(1)依題意得,曲線上的點到點的距離與到直線的距離相等,
所以曲線的方程為:.
過點且傾斜角為的直線方程為,
設(shè),,聯(lián)立,得,
則,,則;
(2)假設(shè)滿足條件的直線存在,其方程為,設(shè)點,
則以為直徑的圓的方程為,
將直線代入,得,
則,
設(shè)直線與以為直徑的圓的交點為、,
則,,
于是有,
當,即時,為定值.
故滿足條件的直線存在,其方程為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱柱中,側(cè)棱與底面垂直,且,,、分別是、的中點,點在線段上,且.
(1)求證:不論取何值,總有;
(2)當時,求平面與平面所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知6名某疾病病毒密切接觸者中有1名感染病毒,其余5名健康,需要通過化驗血液來確定感染者.血液化驗結(jié)果呈陽性的即為感染者,呈陰性即為健康.
(1)若從這6名密切接觸者中隨機抽取3名,求抽到感染者的概率;
(2)血液化驗確定感染者的方法有:①逐一化驗;②分組混合化驗:先將血液分成若干組,對組內(nèi)血液混合化驗,若化驗結(jié)果呈陰性,則該組血液不含病毒;若化驗結(jié)果呈陽性,則對該組的備份血液逐一化驗,直至確定感染者.
(i)采取逐一化驗,求所需檢驗次數(shù)的數(shù)學(xué)期望;
(ii)采取平均分組混合化驗(每組血液份數(shù)相同),依據(jù)所需化驗總次數(shù)的期望,選擇合理的平均分組方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的內(nèi)角A,B,C所對的邊分別是a,b,c,其面積S.
(1)若a,b,求cosB.
(2)求sin(A+B)+sinBcosB+cos(B﹣A)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程和的直角坐標方程;
(2)已知曲線的極坐標方程為,點是曲線與的交點,點是曲線與的交點,、均異于原點,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,則當時,討論的單調(diào)性;
(2)若,且當時,不等式在區(qū)間上有解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為,且滿足,,設(shè),.
(Ⅰ)求證:數(shù)列是等比數(shù)列;
(Ⅱ)若,,求實數(shù)的最小值;
(Ⅲ)當時,給出一個新數(shù)列,其中,設(shè)這個新數(shù)列的前項和為,若可以寫成(,且,)的形式,則稱為“指數(shù)型和”.問中的項是否存在“指數(shù)型和”,若存在,求出所有“指數(shù)型和”;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是自然對數(shù)的底數(shù),,已知函數(shù),.
(1)若函數(shù)有零點,求實數(shù)的取值范圍;
(2)對于,證明:當時,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱柱ABC–A1B1C1的底面是正三角形,側(cè)面BB1C1C是矩形,M,N分別為BC,B1C1的中點,P為AM上一點.過B1C1和P的平面交AB于E,交AC于F.
(1)證明:AA1//MN,且平面A1AMN⊥平面EB1C1F;
(2)設(shè)O為△A1B1C1的中心,若AO=AB=6,AO//平面EB1C1F,且∠MPN=,求四棱錐B–EB1C1F的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com