7.函數(shù)f(x)=$\frac{{x}^{3}+sinx}{1+{x}^{2}}$+3的最大值、最小值分別為M、n,則M+n=( 。
A.0B.3C.6D.9

分析 令g(x)=$\frac{{x}^{3}+sinx}{1+{x}^{2}}$,得到g(x)為奇函數(shù),得到g(x)max+g(x)min=0,相加可得答案.

解答 解:∵f(x)=$\frac{{x}^{3}+sinx}{1+{x}^{2}}$+3,
設g(x)=$\frac{{x}^{3}+sinx}{1+{x}^{2}}$,
∴g(-x)=$\frac{-{x}^{3}-sinx}{1+{x}^{2}}$=-g(x),
∴g(x)為奇函數(shù),
∴g(x)max+g(x)min=0
∵M=3+g(x)max,n=3+g(x)min,
∴M+n=3+3+0=6,
故選:C.

點評 本題主要考查了利用函數(shù)的奇偶性求函數(shù)的最大值與最小值,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

17.已知實數(shù)a,b,c,d滿足(a-lnb)2+(c-d)2=0,則(a-c)2+(b-d)2的最小值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知圓C的圓心為y=$\frac{1}{4}$x2的焦點,且與直線4x+3y+2=0相切,則圓C的方程為( 。
A.${(x-1)^2}+{y^2}=\frac{36}{25}$B.${x^2}+{(y-1)^2}=\frac{36}{25}$C.(x-1)2+y2=1D.x2+(y-1)2=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知集合A={y|y>a2+1或y<a},B={y|2≤y≤4},若A∩B≠∅,則實數(shù)a的取值范圍是$\sqrt{3}>$a$>-\sqrt{3}$或a>2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=ex+m-x3,g(x)=ln(x+1)+2.
(1)若曲線y=f(x)在點(0,f(0))處的切線斜率為1,求實數(shù)m的值;
(2)若h(x)=g(x-1)-ax-2在(0,+∞)有兩個零點,求a的取值范圍;
(3)當m≥1時,證明:f(x)>g(x)-x3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.在平面直角坐標系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=acosφ}\\{y=bsinφ}\end{array}\right.$(a>b>0,φ為參數(shù)),且曲線C1上的點M(2,$\sqrt{3}$)對應的參數(shù)φ=$\frac{π}{3}$.以O為極點,x軸的正半軸為極軸建立極坐標系,曲線C2是圓心在極軸上且經(jīng)過極點的圓.射線$θ=\frac{π}{4}$與曲線C2交于點D($\sqrt{2}$,$\frac{π}{4}$).
(1)求曲線C1的普通方程,曲線C2的極坐標方程;
(2)若A(ρ1,θ),B(ρ2,θ+$\frac{π}{2}$)是曲線C1上的兩點,求$\frac{1}{{{ρ}_{1}}^{2}}$+$\frac{1}{{{ρ}_{2}}^{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.6人站成一排,其中甲不在兩端,甲、乙不相鄰的站法種數(shù)為(  )
A.72B.120C.144D.288

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知非零向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足x2$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow c$=$\overrightarrow{0}$,x∈R.記△=$\overrightarrow$2-4$\overrightarrow a\overrightarrow c$,下列說法正確的是③.(只填序號)
①若△=0,則x有唯一解;
②若△>0,則x有兩解;
③若△<0,則x無解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.函數(shù)$f(x)=\left\{\begin{array}{l}{10^{1-x}}+1,x≤0\\ lg(x+2),x>0.\end{array}\right.$若f(a)=1,則f(8-a)=( 。
A.4B.6C.8D.11

查看答案和解析>>

同步練習冊答案