【題目】甲、乙兩人玩游戲,游戲規(guī)則如下面的程序框圖所示,求甲勝的概率.
【答案】
【解析】
根據(jù)古典概型,記A1,A2,A3表示3個(gè)紅球,B表示1個(gè)白球,則取出一個(gè)球不放回,再取出一個(gè)球有12個(gè)基本事件,其中甲勝包含6個(gè)基本事件,故可求出甲勝的概率.
根據(jù)程序框圖可知,甲、乙兩人玩游戲的規(guī)則是:從裝有3個(gè)紅球和1個(gè)白球的袋中任意取出1個(gè)球后不放回,再任意取出1個(gè)球,若取出的兩球不同色,則甲勝,否則乙勝.
記A1,A2,A3表示3個(gè)紅球,B表示1個(gè)白球,則取出一個(gè)球不放回,再取出一個(gè)球有12個(gè)基本事件:A1A2,A1A3,A1B,A2A1,A2A3,A2B,A3A1,A3A2,A3B,BA1,BA2,BA3.
其中甲勝包含6個(gè)基本事件:A1B,A2B,A3B,BA1,BA2,BA3.
故甲勝的概率P==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),過(guò)定點(diǎn)A的動(dòng)直線(xiàn)和過(guò)定點(diǎn)B的動(dòng)直線(xiàn)交于點(diǎn),則的最大值是________________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)求的值;
(Ⅱ)若函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),求實(shí)數(shù)的最大值;
(Ⅲ)若關(guān)于的方程在區(qū)間內(nèi)有兩個(gè)實(shí)數(shù)根,分別求實(shí)數(shù)與的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ,且此函數(shù)圖象過(guò)點(diǎn)(1,5).
(1)求實(shí)數(shù)m的值;
(2)判斷f(x)奇偶性;
(3)討論函數(shù)f(x)在[2,+∞)上的單調(diào)性?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合M={(x,y)|f(x,y)=0},若對(duì)任意P1(x1 , y1)∈M,均不存在P2(x2 , y2)∈M使得x1x2+y1y2=0成立,則稱(chēng)集合M為“好集合”,下列集合為“好集合”的是( 。
A.M={(x,y)|y﹣lnx=0}
B.M={(x,y)|y﹣x2﹣1=0}
C.M={(x,y)|(x﹣2)2+y2﹣2=0}
D.M={(x,y)|x2﹣2y2﹣1=0}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內(nèi)部)以AB邊所在直線(xiàn)為旋轉(zhuǎn)軸旋轉(zhuǎn)120°得到的,G是 的中點(diǎn).(12分)
(Ⅰ)設(shè)P是 上的一點(diǎn),且AP⊥BE,求∠CBP的大;
(Ⅱ)當(dāng)AB=3,AD=2時(shí),求二面角E﹣AG﹣C的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知斜率為的直線(xiàn)與橢圓C:交于A、B兩點(diǎn),線(xiàn)段AB的中點(diǎn)為M(),(m)。
(1)證明:;
(2)設(shè)F為C的右焦點(diǎn),P為C上一點(diǎn),且++=,證明:2||=||+||.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com