函數(shù)f(x)=
x-4
+
15-3x
的值域是( 。
分析:首先求出函數(shù)的定義域?yàn)閧x|4≤x≤5},想求函數(shù)的值域,可想著去掉根式,因此借助于三角函數(shù),令x=4+sin2θ 
(0≤θ≤
π
2
),把x代入函數(shù)解析式即可轉(zhuǎn)化為關(guān)于角θ的三角函數(shù),把三角函數(shù)化積后可求值域,從而求出原函數(shù)的值域.
解答:解:由
x-4≥0
15-3x≥0
得:4≤x≤5,
所以,函數(shù)的定義域?yàn)閧x|4≤x≤5}.
設(shè)x=4+sin2θ (0≤θ≤
π
2
),
則原函數(shù)化為y=
4+sin2θ-4
+
15-3(4+sin2θ)

=|sinθ|+
3
|cosθ|

∵0≤θ≤
π
2

∴y=sinθ+
3
cosθ
=2(
1
2
sinθ+
3
2
cosθ)
=2sin(θ+
π
3
)

∵0≤θ≤
π
2
,∴
π
3
≤θ+
π
3
5
6
π
,∴1≤2sin(θ+
π
3
)≤2

所以,y=2sin(θ+
π
3
)
的值域是[1,2].
則函數(shù)f(x)=
x-4
+
15-3x
的值域是[1,2].
故選A.
點(diǎn)評(píng):本題考查了函數(shù)的值域及其求法,訓(xùn)練了利用換元法求解函數(shù)的值域,考查了數(shù)學(xué)轉(zhuǎn)化思想,解答此題的關(guān)鍵借助于三角代換化無理函數(shù)為有理函數(shù),此題是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

探究函數(shù)f(x)=x+
4
x
,x∈(0,+∞)
的最小值,并確定取得最小值時(shí)x的值.列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.002 4.04 4.3 5 5.8 7.57
請(qǐng)觀察表中y值隨x值變化的特點(diǎn),完成以下的問題.
(1)函數(shù)f(x)=x+
4
x
(x>0)
在區(qū)間(0,2)上遞減,函數(shù)f(x)=x+
4
x
(x>0)
在區(qū)間
 
上遞增;
(2)函數(shù)f(x)=x+
4
x
(x>0)
,當(dāng)x=
 
時(shí),y最小=
 
;
(3)函數(shù)f(x)=x+
4
x
(x<0)
時(shí),有最值嗎?是最大值還是最小值?此時(shí)x為何值?(直接回答結(jié)果,不需證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足:①函數(shù)y=f(x-2)的圖象關(guān)于直線x=2對(duì)稱;②f(x+2)=-f(x);③f(x)在[-2,0]上是增函數(shù).
下列關(guān)于f(x)的命題:
①函數(shù)f(x)是周期函數(shù);
②函數(shù)f(x)的圖象關(guān)于直線x=2對(duì)稱;
③函數(shù)f(x)在[0,1]上是增函數(shù);
④函數(shù)f(x)在[2,4]上是減函數(shù);
⑤f(4)=f(0).
其中真命題是
①②④⑤
①②④⑤
(寫出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當(dāng)x∈[0,1]時(shí),f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)

②當(dāng)x∈[-1,0]時(shí)f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點(diǎn)的橫坐標(biāo)由小到大構(gòu)成一個(gè)無窮等差數(shù)列;
④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個(gè)不同的根.
其中真命題的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列表格,探究函數(shù)f(x)=x+
4
x
,x∈(0,+∞)
的性質(zhì),
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.02 4.04 4.3 5 5.8 7.57
(1)請(qǐng)觀察表中y值隨x值變化的特點(diǎn),完成以下的問題.
函數(shù)f(x)=x+
4
x
(x>0)
在區(qū)間(0,2)上遞減;
函數(shù)f(x)=x+
4
x
(x>0)
在區(qū)間
(2,+∞)
(2,+∞)
上遞增.
當(dāng)x=
2
2
時(shí),y最小=
4
4

(2)證明:函數(shù)f(x)=x+
4
x
在區(qū)間(0,2)遞減.
(3)函數(shù)f(x)=x+
4
x
(x<0)
時(shí),有最值嗎?是最大值還是最小值?此時(shí)x為何值?(直接回答結(jié)果,不需證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年人教A版高中數(shù)學(xué)必修二3.3直線的交點(diǎn)坐標(biāo)與距離公式練習(xí)卷(一) 題型:選擇題

已知函數(shù)f(x)=x+1,則與曲線y=f(x+1)關(guān)于直線l: x+1=0成軸對(duì)稱圖形的曲線方程是

(A)y=–x  (B)y=–x–4  (C)y=–x+2  (D)y=x

 

查看答案和解析>>

同步練習(xí)冊(cè)答案