已知某試驗(yàn)范圍為[10,90],若用分?jǐn)?shù)法進(jìn)行4次優(yōu)選試驗(yàn),則第二次試點(diǎn)可以是     。

 

【答案】

40或60(填其中一個(gè)也對(duì),給滿分)

【解析】

試題分析:由已知試驗(yàn)范圍為[10,90],可得區(qū)間長(zhǎng)度為80,將其等分8段,利用分?jǐn)?shù)法選取試點(diǎn):由對(duì)稱性可知,第二次試點(diǎn)可以是40或60.

考點(diǎn):本小題主要考查分?jǐn)?shù)法的簡(jiǎn)單應(yīng)用.

點(diǎn)評(píng):一般地,用分?jǐn)?shù)法安排試點(diǎn)時(shí),可以分兩種情況考慮:(1)可能的試點(diǎn)總數(shù)正好是某一個(gè).(2)所有可能的試點(diǎn)總數(shù)大于某一,而小于

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下四個(gè)命題:
①工廠制造的某機(jī)械零件尺寸ξ~N(4,
1
9
),在一次正常的試驗(yàn)中,取1000個(gè)零件時(shí),不屬于區(qū)間(3,5)這個(gè)尺寸范圍的零件大約有3個(gè).
②拋擲n次硬幣,記不連續(xù)出現(xiàn)兩次正面向上的概率為Pn,則
lim
n→∞
Pn=0
③若直線ax+by-3a=0與雙曲線
x2
9
-
y2
4
=1有且只有一個(gè)公共點(diǎn),則這樣的直線有2條.
④已知函數(shù)f(x)=x+
1
x
+a2,g(x)=x3-a3+2a+1,若存在x1,x2∈[
1
a
,a](a>1),使得|f(x1)-g(x2)|≤9,則a的取值范圍是(1,4].
其中正確的命題是
①②④
①②④
(寫出所有正確的命題序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 北師大課標(biāo)高一版(必修3) 2009-2010學(xué)年 第29期 總185期 北師大課標(biāo)版 題型:044

一臺(tái)機(jī)器由于使用時(shí)間較長(zhǎng),但還可以使用.它按不同的轉(zhuǎn)速生產(chǎn)出來(lái)的某機(jī)械零件有一些會(huì)有缺點(diǎn),每小時(shí)生產(chǎn)有缺點(diǎn)零件的多少隨機(jī)器運(yùn)轉(zhuǎn)的速度而變化,下表為抽樣試驗(yàn)結(jié)果:

(1)已知y與x有線性相關(guān)關(guān)系,求線性回歸方程;

(2)若實(shí)際生產(chǎn)中,允許每小時(shí)的產(chǎn)品中有缺點(diǎn)的零件最多為10個(gè),那么,機(jī)器的運(yùn)轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

以下四個(gè)命題:
①工廠制造的某機(jī)械零件尺寸ξ~N(4,數(shù)學(xué)公式),在一次正常的試驗(yàn)中,取1000個(gè)零件時(shí),不屬于區(qū)間(3,5)這個(gè)尺寸范圍的零件大約有3個(gè).
②拋擲n次硬幣,記不連續(xù)出現(xiàn)兩次正面向上的概率為Pn,則數(shù)學(xué)公式Pn=0
③若直線ax+by-3a=0與雙曲線數(shù)學(xué)公式-數(shù)學(xué)公式=1有且只有一個(gè)公共點(diǎn),則這樣的直線有2條.
④已知函數(shù)f(x)=x+數(shù)學(xué)公式+a2,g(x)=x3-a3+2a+1,若存在x1,x2∈[數(shù)學(xué)公式,a](a>1),使得|f(x1)-g(x2)|≤9,則a的取值范圍是(1,4].
其中正確的命題是________(寫出所有正確的命題序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:四川省同步題 題型:填空題

以下四個(gè)命題:
①工廠制造的某機(jī)械零件尺寸ξ~N(4,),在一次正常的試驗(yàn)中,取1000個(gè)零件時(shí),不屬于區(qū)間(3,5)這個(gè)尺寸范圍的零件大約有3個(gè).
②拋擲n次硬幣,記不連續(xù)出現(xiàn)兩次正面向上的概率為Pn,則Pn=0
③若直線ax+by﹣3a=0與雙曲線=1有且只有一個(gè)公共點(diǎn),則這樣的直線有2條.
④已知函數(shù)f(x)=x++a2,g(x)=x3﹣a3+2a+1,若存在x1,x2∈[,a](a>1),
使得|f(x1)﹣g(x2)|≤9,則a的取值范圍是(1,4].
其中正確的命題是(    )(寫出所有正確的命題序號(hào))。

查看答案和解析>>

同步練習(xí)冊(cè)答案