【題目】為得到函數(shù)y=sin(2x+ )的圖象,只需將函數(shù)y=sin2x的圖象( )
A.向右平移 長度單位
B.向左平移 個長度單位
C.向右平移個 長度單位
D.向左平移 長度單位
【答案】D
【解析】解:∵y=sin2x y=sin[2(x+ )]=sin(2x+ ),
∴函數(shù)y=sin(2x+ )的圖象,可由函數(shù)y=sin2x的圖象向左平移 個長度單位.
故選D.
【考點精析】利用函數(shù)y=Asin(ωx+φ)的圖象變換對題目進行判斷即可得到答案,需要熟知圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人想?yún)⒓印吨袊娫~大會》比賽,籌辦方要從10首詩司中分別抽出3首讓甲、乙背誦,規(guī)定至少背出其中2首才算合格; 在這10首詩詞中,甲只能背出其中的7首,乙只能背出其中的8首
(1)求抽到甲能背誦的詩詞的數(shù)量的分布列及數(shù)學(xué)期望;
(2)求甲、乙兩人中至少且有一人能合格的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出曲線的直角坐標(biāo)方程;
(2)已知點的直角坐標(biāo)為,直線與曲線相交于不同的兩點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 的最小正周期為 .
(1)求函數(shù)f(x)的定義域;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家商場對同一種商品開展促銷活動,對購買該商品的顧客兩家商場的獎勵方案如下:
甲商場:顧客轉(zhuǎn)動如圖所示圓盤,當(dāng)指針指向陰影部分(圖中兩個陰影部分均為扇形,且每個扇形圓心角均為,邊界忽略不計)即為中獎·
乙商場:從裝有2個白球、2個藍球和2個紅球的盒子中一次性摸出1球(這些球除顏色外完全相同),它是紅球的概率是,若從盒子中一次性摸出2球,且摸到的是2個相同顏色的球,即為中獎.
(Ⅰ)求實數(shù)的值;
(Ⅱ)試問:購買該商品的顧客在哪家商場中獎的可能性大?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】的三個內(nèi)角的對邊長分別為,是的外接圓半徑,則下列四個條件
(1); (2);
(3); (4).
有兩個結(jié)論:甲:是等邊三角形; 乙:是等腰直角三角形.
請你選出給定的四個條件中的兩個為條件,兩個結(jié)論中的一個為結(jié)論,寫出一個你認(rèn)為正確的命題__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=sin(ωx+ )(ω>0)的圖象的相鄰兩條對稱軸間的距離是 .若將函數(shù)f(x)的圖象向右平移 個單位,再把圖象上每個點的橫坐標(biāo)縮小為原來的一半,得到g(x),則g(x)的解析式為( )
A.g(x)=sin(4x+ )
B.g(x)=sin(8x﹣ )??
C.g(x)=sin(x+ )
D.g(x)=sin4x
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com