【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為,(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)寫出曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

2)若射線與曲線相交于點(diǎn),將逆時(shí)針旋轉(zhuǎn)后,與曲線相交于點(diǎn),且,求的值.

【答案】1;2

【解析】

1)消去曲線參數(shù)方程中的,求得其普通方程,再根據(jù)極坐標(biāo)和直角坐標(biāo)轉(zhuǎn)化的公式,求得曲線的極坐標(biāo)方程.利用極坐標(biāo)和直角坐標(biāo)轉(zhuǎn)化的公式,求得的直角坐標(biāo)方程.

2)將代入的極坐標(biāo)方程,求得的值,然后將曲線的極坐標(biāo)方程,求得的值.根據(jù)列方程,求得的值,進(jìn)而求得的大小.

1)由曲線的參數(shù)方程為,(為參數(shù)),可得其普通方程,

,得曲線的極坐標(biāo)方程.

,

,得曲線的直角坐標(biāo)方程.

2)將代入,

.

逆時(shí)針旋轉(zhuǎn),得的極坐標(biāo)方程為,代入曲線的極坐標(biāo)方程,得.

,得,.

,解得.

因?yàn)?/span>,所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,四邊形ABCD為正方形,平面ACD,且,EPD的中點(diǎn).

(Ⅰ)證明:平面平面PAD;

(Ⅱ)求直線PA與平面AEC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

如圖,在三棱錐, 側(cè)面與側(cè)面均為等邊三角形,中點(diǎn).

)證明:平面

)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)某種型號的電視機(jī)零配件,為了預(yù)測今年月份該型號電視機(jī)零配件的市場需求量,以合理安排生產(chǎn),工廠對本年度月份至月份該型號電視機(jī)零配件的銷售量及銷售單價(jià)進(jìn)行了調(diào)查,銷售單價(jià)(單位:元)和銷售量(單位:千件)之間的組數(shù)據(jù)如下表所示:

月份

銷售單價(jià)(元)

銷售量(千件)

(1)根據(jù)1至月份的數(shù)據(jù),求關(guān)于的線性回歸方程(系數(shù)精確到);

(2)結(jié)合(1)中的線性回歸方程,假設(shè)該型號電視機(jī)零配件的生產(chǎn)成本為每件元,那么工廠如何制定月份的銷售單價(jià),才能使該月利潤達(dá)到最大(計(jì)算結(jié)果精確到)?

參考公式:回歸直線方程,其中.

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若執(zhí)行下面的程序框圖,輸出的值為3,則判斷框中應(yīng)填入的條件是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】每個(gè)國家對退休年齡都有不一樣的規(guī)定,從2018年開始,我國關(guān)于延遲退休的話題一直在網(wǎng)上熱議,為了了解市民對延遲退休的態(tài)度,現(xiàn)從某地市民中隨機(jī)選取100人進(jìn)行調(diào)查,調(diào)查情況如下表:

年齡段(單位:歲)

被調(diào)查的人數(shù)

贊成的人數(shù)

1)從贊成延遲退休的人中任選1人,此人年齡在的概率為,求出表格中的值;

2)若從年齡在的參與調(diào)查的市民中按照是否贊成延遲退休進(jìn)行分層抽樣,從中抽取10人參與某項(xiàng)調(diào)查,然后再從這10人中隨機(jī)抽取4人參加座談會,記這4人中贊成延遲退休的人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,橢圓,、,為橢圓的左、右頂點(diǎn).

設(shè)為橢圓的左焦點(diǎn),證明:當(dāng)且僅當(dāng)橢圓上的點(diǎn)在橢圓的左、右頂點(diǎn)時(shí),取得最小值與最大值.

若橢圓上的點(diǎn)到焦點(diǎn)距離的最大值為,最小值為,求橢圓的標(biāo)準(zhǔn)方程.

若直線中所述橢圓相交于、兩點(diǎn)(不是左、右頂點(diǎn)),且滿足,求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)X~N(μ1,),Y~N(μ2,),這兩個(gè)正態(tài)分布密度曲線如圖所示,下列結(jié)論中正確的是 (  )

A. P(Y≥μ2)≥P(Y≥μ1)

B. P(X≤σ2)≤P(X≤σ1)

C. 對任意正數(shù)t,P(X≥t)≥P(Y≥t)

D. 對任意正數(shù)t,P(X≤t)≥P(Y≤t)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)若函數(shù)有極小值,求該極小值的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案