若f(x)的定義域為[a,b],值域為[a,b](a<b),則稱函數(shù)f(x)是[a,b]上的“四維光軍”函數(shù).
①設g(x)=x2-x+是[1,b]上的“四維光軍”函數(shù),求常數(shù)b的值;
②問是否存在常數(shù)a,b(a>-2),使函數(shù)h(x)=是區(qū)間[a,b]上的“四維光軍”函數(shù)?若存在,求出a,b的值,否則,請說明理由.
; ②不存在,詳見解析

試題分析:①根據(jù)信息找到b所滿足的等式即可求出b的值,一定要先判斷函數(shù)在閉區(qū)間上的單調性;②先假設存在題目要求的常數(shù),根據(jù)“四維光軍”函數(shù)的特性去找到此常數(shù)能得到的結論,推出矛盾即可說明這樣的常數(shù)是不存在的,這是一種逆向思維的題目,首先假設存在,由存在得出矛盾,則可知存在不成立.
試題解析:①由已知得,其對稱軸為,區(qū)間在對稱軸的右邊,
所以函數(shù)在區(qū)間上是單調遞增的,                          3分
由“四維光軍”函數(shù)的定義可知,
,,又因為,解得;            6分
②假如函數(shù)在區(qū)間上是“四維光軍”函數(shù),            7分
因為在區(qū)間是單調遞減函數(shù),則有,             10分
,解得,這與已知矛盾.                        12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)).
(1)若的定義域和值域均是,求實數(shù)的值;
(2)若對任意的,,總有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)若函數(shù)上至少有一個零點,求的取值范圍;
(Ⅱ)若函數(shù)上的最大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題12分)已知函數(shù))在區(qū)間上有最大值和最小值.設,       
(1)求、的值;
(2)若不等式上有解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)在區(qū)間上有最大值3,最小值2,則的取值范圍是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點在直線上運動,則的最小值為  (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)表示中的較大值,表示中的較小值,記得最小值為得最大值為,則( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如果函數(shù)在區(qū)間上是減函數(shù),那么實數(shù)的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如果函數(shù)=x+2(a-1)x+2在區(qū)間(-∞,4)上是減函數(shù),則實數(shù)a的取值范圍是(   )。
A.a≥-3B. a≤-3 C. a≤5D. a≥3

查看答案和解析>>

同步練習冊答案