已知函數(shù),。

  (1) 若,且函數(shù)存在單調(diào)遞減區(qū)間,求的取值范圍;

  (2)當(dāng)時(shí),求函數(shù)的取值范圍。

(1)得取值范圍是。

(2)的取值范圍是。


解析:

(1)時(shí),,則

因?yàn)楹瘮?shù)存在單調(diào)遞減區(qū)間,所以有解,即,又因?yàn)?img width=38 height=18 src="http://thumb.zyjl.cn/pic1/1899/sx/120/258520.gif">,

的解。①當(dāng)時(shí),為開口向上的拋物線,的解;②當(dāng)時(shí),為開口向下的拋物線,的解,所以,且方程至少有一個(gè)正根,所以。綜上可知,得取值范圍是。

(2)時(shí),,

,則,所以

極大值

列表:

所以當(dāng)時(shí),取的最大值

又當(dāng)時(shí),

所以的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
-1
,則f(x)的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•自貢一模)已知函數(shù)f(x)=  
x+1
,  x
≤0,
log2x
,x>0
,
則函數(shù)y=f[f(x)]+1的零點(diǎn)個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(2x+1)的定義域?yàn)閇1,2],則函數(shù)f(4x+1)的定義域?yàn)椋ā 。?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•永州一模)已知函數(shù)f(x)=ln(1+x)-p
x

(1)若函數(shù)f(x)在定義域內(nèi)為減函數(shù),求實(shí)數(shù)p的取值范圍;
(2)如果數(shù)列{an}滿足a1=3,an+1=[1+
1
n2(n+1)2
]an+
1
4n
,試證明:當(dāng)n≥2時(shí),4≤an<4e
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•浦東新區(qū)一模)已知函數(shù)f(x)=
x2+1
-ax
,其中a>0.
(1)若2f(1)=f(-1),求a的值;
(2)當(dāng)a≥1時(shí),判斷函數(shù)f(x)在區(qū)間[0,+∞)上的單調(diào)性;
(3)若函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案