8.若集合A={x|1≤2x≤8},B={x|log2(x2-x)>1},則A∩B=( 。
A.(2,3]B.[2,3]C.(-∞,0)∪(0,2]D.(-∞,-1)∪[0,3]

分析 求出集合A,B,根據(jù)集合的交集定義進(jìn)行計算.

解答 解:∵1≤2x≤8,
∴0≤x≤3,
∴A=[0,3],
∵log2(x2-x)>1,
∴$\left\{\begin{array}{l}{{x}^{2}-x>0}\\{{x}^{2}-x>2}\end{array}\right.$,
∴x>2或x<-1,
∴B=(-∞,-1)∪(2,+∞),
∴A∩B=(2,3],
故選:A

點(diǎn)評 本題主要考查集合的基本運(yùn)算,求出A,B的等價條件是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)g(x)=Asinωx(A>0,ω>0)的最大值為2,其圖象相鄰兩條對稱軸之間的距離為$\frac{π}{2}$,將g(x)向右平移$\frac{π}{12}$個單位,再向上平移一個單位得到f(x)的圖象
(1)求函數(shù)f(x)的解析式;
(2)設(shè)$α∈(0,\frac{π}{2})$,則$f(\frac{α}{2})=2$,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若f(x)是定義在R上的奇函數(shù),且在區(qū)間(-∞,0)上是增函數(shù),又f(2)=0,則xf(x)>0的解集為(-∞,-2)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知各項為正的數(shù)列{an}滿足${a_1}=\frac{1}{2}$,$a_{n+1}^2=\frac{1}{3}a_n^2+\frac{2}{3}{a_n}$,n∈N*
(Ⅰ)證明:0<an<an+1<1(n∈N*);
(Ⅱ)求證:${a_1}+{a_2}+…+{a_n}>n-\frac{9}{4}$(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知命題p:x+y≠-2,命題q:x,y不都是-1,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左右焦點(diǎn)分別為F1、F2,設(shè)動圓過點(diǎn)F2且與直線x=-1相切,記動圓的圓心的軌跡為E.
(1)求軌跡E的方程;
(2)在軌跡E上有兩點(diǎn)M、N,橢圓C上有兩點(diǎn)P、Q,滿足$\overrightarrow{M{F}_{2}}$•$\overrightarrow{P{F}_{2}}$=0,且$\overrightarrow{M{F}_{2}}$∥$\overrightarrow{N{F}_{2}}$,$\overrightarrow{P{F}_{2}}$∥$\overrightarrow{Q{F}_{2}}$,求四邊形PMQN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在三棱錐P-ABC中,點(diǎn)D,E,F(xiàn)分別為棱PC,AC,AB的中點(diǎn),已知PA⊥平面ABC,AB⊥BC,且AB=BC.
(1)求證:平面BED⊥平面PAC;
(2)求二面角F-DE-B的大。
(3)若PA=6,DF=5,求PC與平面PAB所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知關(guān)于x的二次方程ax2+bx+c=0(a>0,b,c∈R)在區(qū)間(0,2)內(nèi)有兩個實(shí)根,若$\left\{\begin{array}{l}{c≥1}\\{25a+10b+4c≥4}\end{array}\right.$,則實(shí)數(shù)a的最小值為(  )
A.1B.$\frac{3}{2}$C.$\frac{9}{4}$D.$\frac{16}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=2sinx($\sqrt{3}$cosx+sinx)-2.
(1)若點(diǎn)P($\sqrt{3}$,-1)在角α的終邊上,求f(α)的值;
(2)若x∈[0,$\frac{π}{2}$],求f(x)的最小值.

查看答案和解析>>

同步練習(xí)冊答案