A. | (10,14) | B. | (12,14) | C. | (10,12) | D. | (9,11) |
分析 由拋物線定義可得|QC|=xQ+1,從而△PQC的周長=|QC|+|PQ|+|PC|=xQ+1+(xP-xQ)+5=6+xP,聯(lián)立圓的方程和拋物線的方程,確定P點橫坐標的范圍,即可得到結(jié)論.
解答 解:拋物線的準線l:x=-1,焦點C(1,0),
由拋物線定義可得|QC|=xQ+1,
圓(x-1)2+y2=25的圓心為(1,0),半徑為5,
可得△PQC的周長=|QC|+|PQ|+|PC|=xQ+1+(xP-xQ)+5=6+xP,
由拋物線y2=4x及圓(x-1)2+y2=25可得交點的橫坐標為4,
即有xP∈(4,6),
可得6+xP∈(10,12),
故△PQC的周長的取值范圍是(10,12).
故選:C.
點評 本題考查拋物線的定義,考查拋物線與圓的位置關(guān)系,確定P點橫坐標的范圍是關(guān)鍵,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{8}$ | C. | $\frac{1}{16}$ | D. | $\frac{1}{27}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com