一只小船以10 m/s的速度由南向北勻速駛過湖面,在離湖面高20米的橋上,一輛汽車由西向東以20 m/s的速度前進(如圖),現(xiàn)在小船在水平P點以南的40米處,汽車在橋上以西Q點30米處(其中PQ⊥水面),則小船與汽車間的最短距離為       . (不考慮汽車與小船本身的大。.

30 m


解析:

設經過時間t汽車在A點,船在B點,(如圖),則AQ=30–20t,BP=40–10t,PQ=20,且有AQBP,PQAQ,PQPB,設小船所在平面為α,AQ,QP確定平面為β,記αβ=l,由AQα,AQβAQl,又AQPQ,得PQl,又PQPB,及lPB=PPQα  作ACPQ,則ACα  連CB,則ACCB,進而AQBP,CPAQCPBP,

AB2=AC2+BC2=PQ2+PB2+PC2=202+(40–10t2+(30–20t)2

=100[5(t–2)2+9],t=2時AB最短,最短距離為30 m.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2011年福建省龍巖市高一上學期期末考試數(shù)學試卷 題型:解答題

(本題滿分10分)一只小船以10 m/s的速度由南向北勻速駛過湖面,在離湖面高20米的橋上,一輛汽車由西向東以20 m/s的速度前進(如圖),現(xiàn)在小船在水平面P點以南的40米處,汽車在橋上Q點以西30米處(其中PQ⊥水面),求小船與汽車間的最短距離(不考慮汽車與小船本身的大。.

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分10分)一只小船以10 m/s的速度由南向北勻速駛過湖面,在離湖面高20米的橋上,一輛汽車由西向東以20 m/s的速度前進(如圖),現(xiàn)在小船在水平面P點以南的40米處,汽車在橋上Q點以西30米處(其中PQ⊥水面),求小船與汽車間的最短距離(不考慮汽車與小船本身的大。.

查看答案和解析>>

同步練習冊答案