【題目】在單位正內(nèi)任取一點P,PA、PBPC為邊生成

(1)當(dāng)分別為銳角三角形、直角三角形、鈍角三角形時求出點P的軌跡

(2)證明當(dāng)的周長取最小值時,面積取最大值

【答案】(1)見解析;(2)

【解析】

如圖,

繞點B逆時針旋轉(zhuǎn),,就是由PAPB、PC所組成的且其三個內(nèi)角,

(1)當(dāng)存在,為直角三角形

所以,P在三個單位圓的AB、BC、CA).

當(dāng)存在,為鈍角三角形

,

由圓內(nèi)角大于圓周角知P在圖中的三個弓形內(nèi)陰影部分,不包括邊界).

當(dāng),同時成立時為銳角三角形,,

由圓外角小于圓周角知P在圖8中的三個圓弧外曲邊內(nèi)部,不包括邊界).

(2)先確定周長取最小值時點P的位置為此,將如圖的繞點B逆時針旋轉(zhuǎn),聯(lián)結(jié)MC、PN則折線

當(dāng)且僅當(dāng)M、N、P、C四點共線時,的周長取最小值此時,即點P的中心).

下面說明這恰好是面積取最大值的條件

,由余弦定理和基本不等式有,

當(dāng)且僅當(dāng),等號成立

,

由面積公式有

兩處放大的地方同時取等號當(dāng)且僅當(dāng)

由式

所以

從而,代入式

這表明,PA、PB的中線上,且相交于距頂點,P為中心

所以,當(dāng)點P的中心時的周長最短且面積最大,最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(,),且的解集為;數(shù)列的前項和為,對任意,滿足.

1)求的值及數(shù)列的通項公式;

2)已知數(shù)列的前項和為,滿足,求數(shù)列的前項和;

3)已知數(shù)列滿足,若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個口袋內(nèi)裝有大小相同的7個白球和1個黑球.

1)從口袋內(nèi)取出3個球,共有多少種取法?

2)從口袋內(nèi)取出3個球,使其中含有1個黑球,有多少種取法?

3)從口袋內(nèi)取出3個球,使其中不含黑球,有多少種取法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點為極點,軸的正半軸為極軸,且與直角坐標(biāo)系長度單位相同的極坐標(biāo)系中,曲線的極坐標(biāo)方程是.

(1)求直線的普通方程與曲線的直角坐標(biāo)方程;

(2)設(shè)點.若直與曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)為了了解青少年的身體素質(zhì),對本社區(qū)的名青少年進(jìn)行了調(diào)研,隨機(jī)抽取了若干名,年齡全部介于歲之間,將年齡按如下方式分成五組:第一組;第二組;;第五組.按上述分組方法得到的頻率分布直方圖如圖所示,已知圖中從左到右的前三個組的頻率之比為,且第二組的頻數(shù)為

1)試估計這名青少年中年齡在內(nèi)的人數(shù);

2)求從本社區(qū)的名青少年中隨機(jī)抽取出的調(diào)研人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小型企業(yè)甲產(chǎn)品生產(chǎn)的投入成本x(單位:萬元)與產(chǎn)品銷售收入y(單位:萬元)存在較好的線性關(guān)系,下表記錄了最近5次該產(chǎn)品的相關(guān)數(shù)據(jù).

x(萬元)

3

5

7

9

11

y(萬元)

8

10

13

17

22

1)求y關(guān)于x的線性回歸方程;

2)根據(jù)(1)中的回歸方程,判斷該企業(yè)甲產(chǎn)品投入成本12萬元的毛利率更大還是投入成本15萬元的毛利率更大(毛利率)?

相關(guān)公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題錯誤的是

A. 三棱錐的四個面可以都是直角三角形;

B. 等差數(shù)列{an}的前n項和為Sn(n=1,2,3…),若當(dāng)首項a1和公差d變化時,a5+a8+a11是一個定值,則S16為定值;

C. 中,sinA>sinB的充要條件;

D. 若雙曲線的漸近線互相垂直,則這條雙曲線是等軸雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)求函數(shù)的極值;

(2)當(dāng)時,若直線 與曲線沒有公共點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)當(dāng)時,函數(shù)有兩個極值點,求的取值范圍;

2)若在點處的切線與軸平行,且函數(shù)時,其圖象上每一點處切線的傾斜角均為銳角,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案