設(shè)F1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右兩個(gè)焦點(diǎn);
①若橢圓C上的點(diǎn)A(1,
3
2
)到F1,F(xiàn)2兩點(diǎn)的距離之和等于4,寫(xiě)出橢圓C的方程;
②設(shè)K是①中所得橢圓上的動(dòng)點(diǎn),求線(xiàn)段F1K的中點(diǎn)的軌跡方程.
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專(zhuān)題:圓錐曲線(xiàn)的定義、性質(zhì)與方程
分析:對(duì)第①問(wèn),由題干條件及橢圓定義,得a,將點(diǎn)A的坐標(biāo)代入橢圓方程中,得b2,從而得橢圓的方程;
對(duì)第②問(wèn),設(shè)動(dòng)點(diǎn)K(x0,y0),設(shè)F1K的中點(diǎn)為M(x,y),用x,y分別表示x0,y0,再將坐標(biāo)(x0,y0)代入橢圓方程中,即得動(dòng)點(diǎn)M的軌跡方程.
解答: 解:①由橢圓的定義知,|AF1|+|AF2|=2a,即4=2a,得a2=4,
從而橢圓C的方程可寫(xiě)成
x2
4
+
y2
b2
=1

將A的坐標(biāo)(1,
3
2
)
代入上式中,得
12
4
+
(
3
2
)2
b2
=1
,得b2=3,
所以橢圓C的方程為
x2
4
+
y2
3
=1

②由①知,F(xiàn)1的坐標(biāo)為(-1,0),設(shè)動(dòng)點(diǎn)K(x0,y0),線(xiàn)段F1K的中點(diǎn)為M(x,y),如右圖所示.
則由中點(diǎn)公式,有
x=
-1+x0
2
y=
0+y0
2
,變形為
x0=2x+1
y0=2y

將上式代入
x
2
0
4
+
y
2
0
3
=1
中,得
(2x+1)2
4
+
(2y)2
3
=1
,
即得線(xiàn)段F1K中點(diǎn)的軌跡方程為(x+
1
2
)2+
y2
3
4
=1
點(diǎn)評(píng):本題考查了橢圓的方程,橢圓的定義,軌跡方程的求法,利用相關(guān)點(diǎn)法求軌跡方程的一般步驟是:
(1)設(shè)軌跡上的點(diǎn)為M(x,y),其他點(diǎn)(即相關(guān)點(diǎn))設(shè)為(x0,y0),(x1,y1),(x2,y2)等;
(2)尋找x,y與相關(guān)點(diǎn)的關(guān)系,用x,y表示相關(guān)點(diǎn);
(3)將相關(guān)點(diǎn)的坐標(biāo)代入曲線(xiàn)方程中,化簡(jiǎn),整理,即得動(dòng)點(diǎn)M的軌跡方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c分別是△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊,若a=1,b=
3
,A+C=2B,則sinC=( 。
A、1
B、
3
3
C、
1
5
D、
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)z=1-i復(fù)數(shù),則復(fù)數(shù)1+z2在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

同時(shí)擲兩枚硬幣,那么互為對(duì)立事件的是(  )
A、至少有1枚正面和恰好有1枚正面
B、恰好有1枚正面和恰好有2枚正面
C、最多有1枚正面和至少有2枚正面
D、至少有2枚正面和恰好有1枚正面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解方程
4
3a
+
2
b
=1
a+b+
a2+b2
=12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在拋物線(xiàn)y=4x2上點(diǎn)P(
 
)到直線(xiàn)y=4x-5的距離最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓
x2
25
+
y2
9
=1
的兩焦點(diǎn)F1,F(xiàn)2,過(guò)F2引直線(xiàn)L交橢圓于A、B兩點(diǎn),則△ABF1的周長(zhǎng)為( 。
A、5B、15C、10D、20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由曲線(xiàn)y2=2x與直線(xiàn)y=-x+4所圍成的封閉圖形的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)M=2t+it-1×2t-1+…+i1×2+i0,其中ik=0或1(k=0,1,2,…t-1,t∈N*),并記M(lit-1it-2…i1i02.對(duì)于給定的x1=(lit-1it-2…i1i02,構(gòu)造無(wú)窮數(shù)列{xh}如下:x2=(li0it-1it-2…i2i12,x3=(li1i0it-1…i3i22,x4=(li2i1it-1…i32
(1)若x1=27,則x4=
 
 (用數(shù)字作答);
(2)給定一個(gè)正整數(shù)m,若x1=22m+2+22m+1+2m+1,則滿(mǎn)足xn=x1(n∈N*),且n≠1)的n的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案