【題目】今年4月23日我市正式宣布實(shí)施“3+1+2”的高考新方案,“3”是指必考的語(yǔ)文、數(shù)學(xué)、外語(yǔ)三門(mén)學(xué)科,“1”是指在物理和歷史中必選一科,“2”是指在化學(xué)、生物、政治、地理四科中任選兩科.為了解我校高一學(xué)生在物理和歷史中的選科意愿情況,進(jìn)行了一次模擬選科. 已知我校高一參與物理和歷史選科的有1800名學(xué)生,其中男生1000人,女生800人. 按分層抽樣的方法從中抽取了36個(gè)樣本,統(tǒng)計(jì)知其中有17個(gè)男生選物理,6個(gè)女生選歷史.

(I)根據(jù)所抽取的樣本數(shù)據(jù),填寫(xiě)答題卷中的列聯(lián)表. 并根據(jù)統(tǒng)計(jì)量判斷能否有的把握認(rèn)為選擇物理還是歷史與性別有關(guān)?

(II)在樣本里選歷史的人中任選4人,記選出4人中男生有人,女生有人,求隨機(jī)變量 的分布列和數(shù)學(xué)期望.(的計(jì)算公式見(jiàn)下),臨界值表:

【答案】(I)沒(méi)有90%的把握認(rèn)為選擇物理還是歷史與性別有關(guān);(II)見(jiàn)解析

【解析】

(I)由條件知,按分層抽樣法抽取的36個(gè)樣本數(shù)據(jù)中有個(gè)男生,16個(gè)女生,根據(jù)題意列出列聯(lián)表,求得的值,即可得到結(jié)論.

(II)由(I)知在樣本里選歷史的有9人. 其中男生3人,女生6人,求得可能的取值有,進(jìn)而求得相應(yīng)的概率,列出隨機(jī)變量的分布列,利用公式求解期望.

(I)由條件知,按分層抽樣法抽取的36個(gè)樣本數(shù)據(jù)中有個(gè)男生,16個(gè)女生,結(jié)合題目數(shù)據(jù)可得列聯(lián)表:

男生

女生

合計(jì)

選物理

17

3

20

選歷史

10

6

16

合計(jì)

27

9

,

所以沒(méi)有90%的把握認(rèn)為選擇物理還是歷史與性別有關(guān).

(II)由(I)知在樣本里選歷史的有9人. 其中男生3人,女生6人.

所以可能的取值有.

,;,,

所以的分布列為:

2

0

所以的期望.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】表示不超過(guò)的最大整數(shù),例,,.已知函數(shù).

(1)求函數(shù)的定義域;

(2)求證:當(dāng)時(shí),總有,并指出當(dāng)為何值時(shí)取等號(hào);

(3)解關(guān)于的不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,焦距為,直線與橢圓相交于、兩點(diǎn),關(guān)于直線的對(duì)稱(chēng)點(diǎn)在橢圓上.斜率為的直線與線段相交于點(diǎn),與橢圓相交于、兩點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程

(2)求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩個(gè)正數(shù)a,b滿(mǎn)足a+b=1

1)求證:;

2)若不等式對(duì)任意正數(shù)a,b都成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地級(jí)市共有200000中小學(xué)生,其中有7%學(xué)生在2017年享受了“國(guó)家精準(zhǔn)扶貧”政策,在享受“國(guó)家精準(zhǔn)扶貧”政策的學(xué)生中困難程度分為三個(gè)等次:一般困難、很困難、特別困難,且人數(shù)之比為5:3:2,為進(jìn)一步幫助這些學(xué)生,當(dāng)?shù)厥姓O(shè)立“專(zhuān)項(xiàng)教育基金”,對(duì)這三個(gè)等次的困難學(xué)生每年每人分別補(bǔ)助1000元、1500元、2000元。經(jīng)濟(jì)學(xué)家調(diào)查發(fā)現(xiàn),當(dāng)?shù)厝司芍淠晔杖胼^上一年每增加,一般困難的學(xué)生中有會(huì)脫貧,脫貧后將不再享受“精準(zhǔn)扶貧”政策,很困難的學(xué)生中有轉(zhuǎn)為一般困難,特別困難的學(xué)生中有轉(zhuǎn)為很困難,F(xiàn)統(tǒng)計(jì)了該地級(jí)市2013年到2017年共5年的人均可支配年收入,對(duì)數(shù)據(jù)初步處理后得到了如圖所示的散點(diǎn)圖和表中統(tǒng)計(jì)量的值,其中年份取13時(shí)代表2013年, (萬(wàn)元)近似滿(mǎn)足關(guān)系式,其中為常數(shù)。(2013年至2019年該市中學(xué)生人數(shù)大致保持不變)

其中,

(Ⅰ)估計(jì)該市2018年人均可支配年收入;

(Ⅱ)求該市2018年的“專(zhuān)項(xiàng)教育基金”的財(cái)政預(yù)算大約為多少?

附:對(duì)于一組具有線性相關(guān)關(guān)系的數(shù)據(jù),其回歸直線方程 的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面,,,,為線段上一點(diǎn),的中點(diǎn).

(1)證明:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是異面直線a、b的公垂線,長(zhǎng)度為2,點(diǎn)C、D分別在直線a和b上,且CD長(zhǎng)為4,過(guò)線段AB的中點(diǎn)M作平面α,使得AB⊥平面α,線段CD與平面α交點(diǎn)為N.

(1)求異面直線AB和CD所成的角的大。

(2)求證:直線a∥α且CN=DN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C:,直線l:y=kx+b與橢圓C相交于A、B兩點(diǎn).

(1)如果k+b=﹣,求動(dòng)直線l所過(guò)的定點(diǎn);

(2)記橢圓C的上頂點(diǎn)為D,如果∠ADB=,證明動(dòng)直線l過(guò)定點(diǎn)P(0,﹣);

(3)如果b=﹣,點(diǎn)B關(guān)于y軸的對(duì)稱(chēng)點(diǎn)為B,向直線AB是過(guò)定點(diǎn)?如果是,求出定點(diǎn)的坐標(biāo);如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線與平面,下列命題:

①若平行內(nèi)的一條直線,則;②若垂直內(nèi)的兩條直線,則;③若,則;④若mα,lβ,則;⑤若,且,則;⑥若,,,則;其中正確的命題為______________(填寫(xiě)所有正確命題的編號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案