P={α|α=(-1,1)+m(1,2),m∈R},Q={β|β=(1,-2)+n(2,3),n∈R}是兩個向量集合,則P∩Q等于( )
A.{(1,-2)}
B.{(-13,-23)}
C.{(-2,1)}
D.{(-23,-13)}
【答案】
分析:根據所給的兩個集合的元素,表示出兩個集合的交集,在集合P中,元素α=(-1+m,1+2m),在集合Q中,元素β=(1+2n,-2+3n),根據這兩個元素是相同的寫出關系式,得到m和n的值,得到點的坐標.
解答:解:根據所給的兩個集合的元素,表示出兩個集合的交集,
在集合P中,
=(-1+m,1+2m),
在集合Q中,
=(1+2n,-2+3n).
要求兩個向量的交集,即找出兩個向量集合中的相同元素,
∵元素是向量,要使的向量相等,只有橫標和縱標分別相等,
∴
二元一次方程組的解只有一組,
∴
此時α=β=(-1-12,1-2×12)=(-13,-23).
故選B.
點評:本題考查集合種元素的關系,考查向量的坐標表示,是一個基礎題,解題的關鍵是正確理解兩個集合的元素相等的條件.