【題目】如圖,組合體由半個(gè)圓錐和一個(gè)三棱錐構(gòu)成,其中是圓錐底面圓心,是圓弧上一點(diǎn),滿足是銳角,.
(1)在平面內(nèi)過點(diǎn)作平面交于點(diǎn),并寫出作圖步驟,但不要求證明;
(2)在(1)中,若是中點(diǎn),且,求直線與平面所成角的正弦值.
【答案】(1)答案見解析;(2).
【解析】
(1)①延長(zhǎng)交的延長(zhǎng)線于點(diǎn);②連接;③過點(diǎn)作交于點(diǎn),可得點(diǎn)P.
(2)若是中點(diǎn),則是中點(diǎn),又因?yàn)?/span>,所以,所以,從而.依題意,兩兩垂直,分別以,,為,,軸建立空間直角坐標(biāo)系,運(yùn)用空間向量線面角的求解方法可得解.
(1)①延長(zhǎng)交的延長(zhǎng)線于點(diǎn);②連接;③過點(diǎn)作交于點(diǎn).
(2)若是中點(diǎn),則是中點(diǎn),又因?yàn)?/span>,所以,所以,從而.
依題意,兩兩垂直,分別以,,為,,軸建立空間直角坐標(biāo)系,
則,
從而,
設(shè)平面的法向量為,
則即取,得.
則,
所以直線與平面所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《高中數(shù)學(xué)課程標(biāo)準(zhǔn)》(2017版)規(guī)定了數(shù)學(xué)直觀想象學(xué)科的六大核心素養(yǎng),為了比較甲、乙兩名高二學(xué)生的數(shù)學(xué)核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標(biāo)對(duì)二人進(jìn)行了測(cè)驗(yàn),根據(jù)測(cè)驗(yàn)結(jié)果繪制了雷達(dá)圖(如圖,每項(xiàng)指標(biāo)值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是(注:雷達(dá)圖,又可稱為戴布拉圖、蜘蛛網(wǎng)圖,可用于對(duì)研究對(duì)象的多維分析)( )
A.甲的直觀想象素養(yǎng)高于乙
B.甲的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)據(jù)分析素養(yǎng)
C.乙的數(shù)學(xué)建模素養(yǎng)與數(shù)學(xué)運(yùn)算素養(yǎng)一樣
D.乙的六大素養(yǎng)整體水平低于甲
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某單位的食堂中,食堂每天以10元/斤的價(jià)格購(gòu)進(jìn)米粉,然后以4.4元/碗的價(jià)格出售,每碗內(nèi)含米粉0.2斤,如果當(dāng)天賣不完,剩下的米粉以2元/斤的價(jià)格賣給養(yǎng)豬場(chǎng).根據(jù)以往統(tǒng)計(jì)資料,得到食堂某天米粉需求量的頻率分布直方圖如圖所示,若食堂購(gòu)進(jìn)了80斤米粉,以(斤)(其中)表示米粉的需求量, (元)表示利潤(rùn).
(1)估計(jì)該天食堂利潤(rùn)不少于760元的概率;
(2)在直方圖的需求量分組中,以區(qū)間中間值作為該區(qū)間的需求量,以需求量落入該區(qū)間的頻率作為需求量在該區(qū)間的概率,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣a|+|x+b|,ab>0.
(1)當(dāng)a=1,b=1時(shí),求不等式f(x)<3的解集;
(2)若f(x)的最小值為2,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,長(zhǎng)軸的兩個(gè)端點(diǎn)分別為、.短軸的兩個(gè)端點(diǎn)分別為,.菱形的面積為,離心率.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè),經(jīng)過點(diǎn)M作斜率不為0的直線交橢圓C于A、B兩點(diǎn),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐,底面為平行四邊形,且,點(diǎn)M為的中點(diǎn),,且平面平面.
(1)求證:平面平面;
(2)當(dāng)直線與平面所成角的正切值為時(shí),求四棱錐的體積及平面將四棱錐分成的兩部分的體積比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí), 恒成立,求的范圍;
(2)若在處的切線為,求的值.并證明當(dāng))時(shí), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進(jìn)行如下試驗(yàn):將200只小鼠隨機(jī)分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過一段時(shí)間后用某種科學(xué)方法測(cè)算出殘留在小鼠體內(nèi)離子的百分比.根據(jù)試驗(yàn)數(shù)據(jù)分別得到如下直方圖:
記為事件:“乙離子殘留在體內(nèi)的百分比不低于”,根據(jù)直方圖得到的估計(jì)值為.
(1)求乙離子殘留百分比直方圖中的值;
(2)分別估計(jì)甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某運(yùn)動(dòng)制衣品牌為了成衣尺寸更精準(zhǔn),現(xiàn)選擇15名志愿者,對(duì)其身高和臂展進(jìn)行測(cè)量(單位:厘米),左圖為選取的15名志愿者身高與臂展的折線圖,右圖為身高與臂展所對(duì)應(yīng)的散點(diǎn)圖,并求得其回歸方程為,以下結(jié)論中不正確的為
A. 15名志愿者身高的極差小于臂展的極差
B. 15名志愿者身高和臂展成正相關(guān)關(guān)系,
C. 可估計(jì)身高為190厘米的人臂展大約為189.65厘米,
D. 身高相差10厘米的兩人臂展都相差11.6厘米,
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com