【題目】設(shè)數(shù)列{an},{bn}都是等差數(shù)列,若a1+b1=7,a3+b3=21,則a5+b5= .
【答案】35
【解析】解:∵數(shù)列{an},{bn}都是等差數(shù)列,
∴設(shè)數(shù)列{an}的公差為d1 , 設(shè)數(shù)列{bn}的公差為d2 ,
∴a3+b3=a1+b1+2(d1+d2)=21,
而a1+b1=7,可得2(d1+d2)=21﹣7=14.
∴a5+b5=a3+b3+2(d1+d2)=21+14=35
所以答案是:35
【考點(diǎn)精析】本題主要考查了等差數(shù)列的性質(zhì)的相關(guān)知識點(diǎn),需要掌握在等差數(shù)列{an}中,從第2項(xiàng)起,每一項(xiàng)是它相鄰二項(xiàng)的等差中項(xiàng);相隔等距離的項(xiàng)組成的數(shù)列是等差數(shù)列才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從12個(gè)同類產(chǎn)品(其中10個(gè)是正品,2個(gè)是次品)中任意抽取3個(gè),
(1)3個(gè)都是正品;
(2)至少有1個(gè)是次品;
(3)3個(gè)都是次品;
(4)至少有1個(gè)是正品,
上述四個(gè)事件中為必然事件的是 (寫出所有滿足要求的事件的編號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a>0且a≠1,則“函數(shù)f(x)=ax在R上是減函數(shù)”,是“函數(shù)g(x)=(2﹣a)x3在R上是增函數(shù)”的( )
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)l,m為兩條不同的直線,α,β是兩個(gè)不同的平面,下列命題中正確的是( )
A.若lα,mα,l∥β,m∥β,則α∥β
B.若lα,mβ,l∥m,則α∥β
C.若lα,mα,l∩m=點(diǎn)P,l∥β,m∥β,則α∥β
D.若l∥α,l∥β,則α∥β
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)a1 , a2 , a3 , a4 , a5的標(biāo)準(zhǔn)差為2,則數(shù)3a1﹣2,3a2﹣2,3a3﹣2,3a4﹣2,3a5﹣2的方差為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點(diǎn)(3,1)作圓(x﹣1)2+y2=1的兩條切線,切點(diǎn)分別為A,B,則直線AB的方程為( 。
A.2x+y﹣3=0
B.2x﹣y﹣3=0
C.4x﹣y﹣3=0
D.4x+y﹣3=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U=R,A={x|x2<16},B={x|y=log3(x﹣4)},則下列關(guān)系正確的是( )
A.A∪B=R
B.A∪(RB)=R
C.A∩(RB)=R
D.(RA)∪B=R
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com