分析:(1)由二次函數(shù)的圖象和性質(zhì),結(jié)合函數(shù)y=f(|x|)的圖象由函數(shù)f(x)的圖象,橫向?qū)φ圩儞Q所得,可得若函數(shù)y=f(|x|)有四個(gè)單調(diào)區(qū)間,則函數(shù)f(x)在區(qū)間[0,+∞)上不單調(diào),進(jìn)而得到實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=1時(shí),|x
2+3x|=m|x-1|恰有4個(gè)相異的實(shí)數(shù)根,即m=
||恰有4個(gè)相異的實(shí)數(shù)根,令h(x)=
||,結(jié)合對(duì)勾函數(shù)的圖象和性質(zhì),可得滿(mǎn)足條件的實(shí)數(shù)m的取值范圍.
解答:
解:(1)∵函數(shù)f(x)=x
2+3ax+1的圖象是開(kāi)口朝上,且以直線(xiàn)x=-
為對(duì)稱(chēng)軸的拋物線(xiàn),
函數(shù)y=f(|x|)的圖象由函數(shù)f(x)的圖象,橫向?qū)φ圩儞Q所得,
若函數(shù)y=f(|x|)有四個(gè)單調(diào)區(qū)間,
則函數(shù)f(x)在區(qū)間[0,+∞)上不單調(diào),
∴-
>0,
解得:a<0,
∴實(shí)數(shù)a的取值范圍為(-∞,0),
(2)∵當(dāng)a=1時(shí),f(x)=x
2+3x+1,
∴|f(x)-1|=|x
2+3x|,
則|x
2+3x|=m|x-1|恰有4個(gè)相異的實(shí)數(shù)根,
即m=
||恰有4個(gè)相異的實(shí)數(shù)根,
令h(x)=
||=|(x-1)+
+5|,
結(jié)合對(duì)勾函數(shù)的圖象和性質(zhì)及函數(shù)圖象的對(duì)折變換法則,可得:
當(dāng)x=±3時(shí),h(x)取最小值9,當(dāng)x→0或x→∞時(shí),h(x)→+∞,
且h(x)在(-∞,-3),(0,3)上為減函數(shù),在(-3,0),(3,+∞)上為增函數(shù),
若m=
||恰有4個(gè)相異的實(shí)數(shù)根,則m>9